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In high-frequency metro lines, train delays and substation peak power often occur, affecting safe and efficient
train operation. In this paper, we propose real-time train regulation methods considering substation peak power
reduction, in which runtimes and dwelltimes are adjusted to minimize the timetable and headway deviations and
avoid multiple train accelerating. Firstly, we proposed two indirect indicators, i.e. overlapping time between
accelerating phases and overlapping quantity between accelerating phases, which are minimized to suppress
substation peak power in joint optimal train regulation models. The joint optimal train regulation models are
based on the traditional real-time train regulation model considering the train traffic dynamics and control
constraints. For the real-time requirement of train regulation, model predictive control (MPC) algorithms are
designed to solve the formulated joint optimal control models, which generate the optimal train regulation
strategies at each control cycle based on the real-time updated feedback system states. Finally, numerical ex-
amples based on one of the Guangzhou metro lines are implemented to verify the effectiveness and robustness of
the proposed methods. The results show that the train regulation strategy with minimizing the overlapping
quantity can not only suppress train delays and substation peak power, but also meet the real-time computation
requirement.

considering the issue of environmental sustainability, energy-saving is
also considered in the train regulation strategy (Lin & Sheu, 2011; Sheu

1. Introduction

Urban rail transit (URT) systems play an important role in urban
public transportation, especially in big cities (e.g. Tokyo, Paris, and
Beijing). Trains in URT systems are keeping high-frequency to meet
large passenger transportation demands. However, due to the high-
frequency operation and crowded environments, perturbances often
occur in URT systems, which will cause train delays. If the train delays
cannot be suppressed in time, they will spread to subsequent trains and
stations. In addition, the train delays will affect the quality of service and
even cause system interruptions (Yin, Tang, Yang, Gao, & Ran, 2016).

To suppress the train delays, train regulation strategies are applied to
adjust disturbed timetables. Arrival and departure times are adjusted
under small perturbances (i.e. disturbances), and the plan of train ser-
vices is also adjusted under big perturbances (i.e. disruptions) (Hong
etal., 2021). Minimizing timetable deviation and headway deviation are
two main goals of train regulation, in which the first term is used for
improving the commercial speed and the second term is used to improve
the regularity of headway (Zhang, Li, & Yang, 2019). In addition,
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& Lin, 2012).

On the other hand, the high substation peak power is also a major
problem in high-frequency URT systems, which affect the safe and
efficient operation of trains. Although, some researches in literature
(Barmann, Martin, & Schneider, 2021; Chen, Lin, & Liu, 2005; Jin, Feng,
Wang, Sun, & Fang, 2021) begin to stress this problem, in which time-
tables are optimized to suppress peak power in scheduling processes. To
the best of our knowledge, there is no train regulation study combining
substation peak power reduction. Based on this, the aim of this paper is
to determine the train regulation strategy considering suppressing the
substation peak power, so as to ensure the stability of URT systems.

1.1. Literature review
The train regulation problem for URT systems is usually formulated

as an optimization problem and solved by different algorithms. Pelle-
grini, Marliere, Pesenti, and Rodriguez (2015), Pellegrini, Pesenti, and
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Rodriguez (2019) formulated the train regulation problem into a mixed
integer linear programming model and designed a heuristic algorithm to
find the optimal train rescheduling plans. Schon and Konig (2018)
presented a multi-stage stochastic dynamic programming model for the
train regulation problem, in which uncertainties over future delays were
considered. Based on the alternative graph method, Ariano, Corman,
Pacciarelli, and Pranzo (2008) described the train regulation problem as
a job shop scheduling problem. They made use of a branch-and-bound
algorithm for sequencing train movements and developed a local
search algorithm for train rerouting optimization purposes. In addition,
tabu search algorithm (Corman, D’Ariano, Pacciarelli, & Pranzo, 2010),
heuristic algorithm (Corman, D’ Ariano, Pacciarelli, & Pranzo, 2012) and
variable neighbourhood search algorithm (Sama, D’Ariano, Corman, &
Pacciarelli, 2017) were applied to solve the train regulation problem
based on the alternative graph method, aiming to reduce computation
cost. For achieving real-time application of train regulation strategies,
Semrov, Marsetic, Zura, Todorovski, and Srdic (2016) introduced a train
regulation method based on reinforcement learning to reduce compu-
tation time. Wang et al. (2021) developed a two-stage approach to
enhance computational efficiency, where a small-size optimization
problem was solved in the first stage and a mixed integer linear pro-
gramming problem was solved in the second stage according to the first
stage solution. Li, Li, Liu, Gao, and Yang (2021) proposed a decompo-
sition method based on the alternating direction method of multipliers
to divide the train regulation problem into many sub-problems, one for
each train. Each sub-problem could be computed in a distributed
manner to realize real-time control.

Based on the discrete-event traffic model, some studies solved the
real-time train regulation problem based on model predictive control
(MPC). MPC is a model-based closed-loop control framework that adopts
a strategy of rolling optimization and thus repeatedly optimizes control
actions in real-time, which not only reduces the computation cost but
also improve the robustness of control actions (Zhang, Li, Wang, Wang,
& Yang, 2021). MPC has been widely applied in transportation systems
for trajectory following (Wang, Zha, & Wang, 2021), energy manage-
ment (Novak, Lesic, & Vasak, 2018), and traffic control (Sirmatel &
Geroliminis, 2021; Wu, Li, Xi, & De Schutter, 2021). More details about
the application of MPC in engineering fields can be seen in the study
(Schwenzer, Ay, Bergs, & Abel, 2021). For the train regulation problem,
Campion, Van Breusegem, Pinson, and Bastin (1985) proposed a state-
space model to describe the traffic dynamics, and set minimizing the
timetable and headway deviations as the model objectives. They applied
the one-step optimal control to achieve real-time state feedback control.
Breusegem, Campion, and Bastin,. (1991) established a discrete-event
traffic model of metro lines and designed a state feedback control al-
gorithm to ensure system stability. This model was useful to analyze the
stability of the URT train regulation problem. Grube and Cipriano
(2010) presented a novel strategy based on MPC for real-time control of
URT systems. The strategy was computed using genetic algorithms at
each control cycle. Wang, Li, Su, and Tang (2019) designed a fuzzy
predictive controller to reduce train delays considering fuzzy passenger
arrival rate. Moaveni and Najafi (2018) designed a robust MPC algo-
rithm to compensate the disturbances and to regulate traffic in the
presence of operational constraints, in which an uncertain model is
considered to accommodate variation in passenger demand. Wang, Zhu,
Li, Yang, and De Schutter (2022) proposed a novel two-layer hierar-
chical model predictive control method combining train regulation and
train control for minimizing train delays and cancellations. By applying
MPC, the original train regulation optimization problem could be split
into a set of convex quadratic programming problems, which could be
calculated efficiently and satisfied the real-time control requirement (Li,
Yang, & Gao, 2019).

In the optimal train regulation problem, minimizing the impact of
disturbances is the main optimization goal, and energy-saving
rescheduling is also a hot topic in recent years (Li et al., 2020). Lin
and Sheu (2011) built a traffic-energy model to characterize the
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complicated dynamics with regard to the traffic and the energy con-
sumption of train running processes. They designed an adaptive-
optimal-control algorithm to optimize train regulation strategies
through reinforcement learning. Sheu and Lin (2012) proposed a dual
heuristic programming to obtain the energy-saving train regulation
strategy via station dwell time adjusting and running process coasting
control. Yin et al. (2016) established a stochastic model jointly consid-
ering the time delay of affected passengers, passenger total traveling
time and operational costs of trains, which was solved by an approxi-
mate dynamic programming approach within a short computation time.
Zhang et al. (2019) combined minimizing the energy consumption into
the objective function of the train regulation problem, and designed a
MPC algorithm to obtain optimal train regulation strategies in real-time.

On the other hand, reducing substation peak power has been
considered in the train timetable optimization problem, which keeps the
safe and efficient operation of trains. Chen et al. (2005) built a timetable
optimization model to avoid simultaneous accelerating of multiple
trains, aiming to reduce maximum traction power, which was solved by
genetic algorithms. Jin et al. (2021) transformed the timetable optimi-
zation model considering peak power reduction into a mixed integer
programming model, which could only be solved offline due to its
complexity. Barmann et al. (2021) proposed a specially tailored exact
Benders algorithm to calculate an optimal timetable with less simulta-
neous train accelerating, so as to limit peak consumption and improve
the stability of substations. However, there is no work considering
reducing peak power in the train regulation problem.

1.2. Proposed approach and contributions

As shown above, a variety of studies have focused on the train
regulation problem, part of them establish complicated optimization
models considering multiple optimization goals, like minimizing time-
table deviation, minimizing headway deviation, and energy-saving.
Meanwhile, many of them propose novel algorithms to obtain the
optimal train regulation strategy within a short computation time aim-
ing to achieve real-time control. This paper focuses on employing the
MPC algorithm to the train regulation problem under small perturba-
tions (disturbances) for metro lines, in which substation peak power is
reduced by avoiding simultaneous train acceleration. Although studies
(Barmann et al., 2021; Chen et al., 2005; Jin et al., 2021) have stressed
reducing substation peak power in the timetable optimization problem,
the proposed offline optimization methods are not suitable for applying
to the real-time train regulation problem. Specifically, we aim to make
the following contributions to the study of the train regulation problem.

(1) Train regulation models, which consider train traffic dynamics
and substation peak power, are formulated. Two indirect indicators (i.e.
overlapping time between accelerating phases, overlapping quantity
between accelerating phases) are introduced to express the substation
peak power, which are minimized to reduce peak power. In addition, the
proposed models are rebuilt into MIQP problems for better solving.

(2) MPC algorithms are developed to produce the optimal train
regulation strategies reducing the influence of disturbances and sub-
station peak power in real-time. By applying MPC, the complex MIQP
problems are divided into a set of simple MIQP problems. At each con-
trol cycle, optimal control actions are obtained by effectively solving
these subproblems, which satisfies the real-time control requirement.

The rest of this paper is organized as follows. In Section 2, we give a
description of the metro train regulation problems considering substat-
ion peak power reduction in an open metro line. Then, we propose the
solution methodology for the metro train regulation problems based on
MPC in Section 3. In Section 4, we give numerical examples based on one
of the Guangzhou metro lines, to demonstrate the effectiveness and
robustness of the proposed approaches. We conclude this paper in Sec-
tion 5.
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2. Problem description

In this paper, we consider a metro line with 21 stations, where J trains
orderly run through stations, as shown in Fig. 1.

2.1. Notations and parameters

For modelling convenience, Table 1 firstly gives all the relevant
notations and parameters used in this paper.

2.2. Traditional train regulation model

2.2.1. Train traffic dynamics model

Based on the discrete-event model proposed by V.V. Breusegem et al.
(1991), the train traffic dynamics model is formulated. The train traffic
dynamics for the actual departure time of train j at station i +1 can be
described as:

£

i

+1:té+’f+d£+1 1

which is actually the actual departure time of train j at station i plus the
actual runtime from station i to station i +1 and the actual dwelltime at
station i + 1.

The actual runtime of train j from station i to station i+1 can be
described as:

¥ = Ri+ur] +wr} @

which is usually affected by uncertain runtime disturbance wr}, and

control action ur';: is applied to reduce the effect of the disturbance.

Meanwhile, the actual dwelltime of train j at station i+1 is affected
by uncertain dwelltime disturbance wd’l: 41> and control action ud’l: is
applied:

d]:+1 = Dj1 +udi,, + Wdfﬂ 3)

In addition, by combining Eq. 1-3, the train traffic dynamics model
can be described as:

toy = B+ Ri+Diy +url +ud, +wrl+wd,, ©)

i

Besides, let k represent the stage, the actual departure time at stage k
is described as the matrix form f = [~1, &2, ..., &1)" (Li, Dessouky,
Yang, & Gao, 2017; Wang, Li, Tang, & Yang, 2022), which denotes the
departure times of trains at all the stations. Based on Eq. 4, the matrix
form of the train traffic dynamics model in the up direction can be
described as:

tkH:Atk+T0,k+R+D+urk+udk+wrk+wdk (5)

where, ury = [urk, urk1, ...,ur’l‘jl“'l}T, urk = 0; udy, =
T

wd udS™t L ud Y wne = wrk owrk L w1k = o

de = [Wd’lc,WdI;il,...,Wd;‘iHl]T; R = [R(),Rl,...,Rl,l]T, R() = O;D =
[D1,Ds,....D1)"; A = [Aylpy with Aj=1 for i=j+1 and Aj= 0

. T . . .
otherwise; Tox = [Ta’{7 0,...,0];, Ta’{ is the departure time of train k at
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Table 1
Notations and parameters.
Index Description
i Index of stations, 1<i<2I, (1, ...,1] for the up direction and
[I+1,...,2I for the down direction
j Index of trains, 1<j<J
Parameters Description
1{ Nominal departure time of train j at station i
Wi min Minimum departure-arrival interval at station i
D; Nominal dwelltime at station i
D; min Minimal dwelltime at station i
H Nominal headway
R; Nominal runtime from station i to station i + 1
Ri min Minimum runtime from station i to station i + 1
A; Accelerating duration from station i to station i + 1

State variables Description

4 Actual departure time of train j at station i
d{j Actual dwelltime of train j at station i
,-li Actual runtime of train j from station i to station i + 1
xli Deviation of train j from nominal departure time at station i
01: Overlapping time between train j leaving station i and train j —1
leaving station i + 1
del: Disturbance of dwelltime of train j at station i
wr’l: Disturbance of runtime of train j from station i to station i + 1
Decision Description
variables
udi: Control action of dwelltime of train j at station i
ur‘i Control action of runtime of train j from station i to station i + 1

station 1, TaX*! = Ta¥ + H. To better illustrate the variation of the state

variable in Eq. 5, the illustration of the transfer from stage k to stage k +1
is shown in Fig. 2. Control actions ury and udy are applied to suppress the
influence of deviations wry and wdj, at stage k.

2.2.2. Objective functions

The objectives of the traditional train regulation problem for metro
lines is to minimize the timetable deviation, headway deviation and
magnitude of the control actions (Zhang et al., 2019), which can be
described as:

J=p () ] =)+ pa () +pyd(ud))’ ©)

ij ij ij ij
where, p1,p2 and ps are the weight coefficients.

The first part in the objective function 6 represents the sum of
timetable deviation, which is reduced to suppress delay propagation.
The actual departure times will deviate from the nominal scheduling due
to disturbances. The deviation from the nominal timetable of train j at
station i +1 can be defined as:

xéﬂ = tf+1 - T';H @

Train j Train j-1
AN N R
Lt [2[—U—

Depot

<«Down— | 2 || Il

| Terminal

R

Fig. 1. The illustration of the metro line.
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Fig. 2. The illustration of the transfer from stage k to stage k + 1.

which can be rewritten as the following vector and matrix form:

Xir1 = 1 — Tt ®

where, x = &1 2k 2, k) T = (T80 Th2 L TR

The second part in the objective function 6 represents the sum of
headway deviation, which is minimized to keep the regularity of
headway and thus reduce passenger waiting time. The headway be-
tween train j and train j—1 at station i also deviates from the nominal
headway H, which can be defined as:

(t£+l - tﬁ;}) -H= sz:+1 *xijr} 9
The third and fourth parts in the objective function 6 represent the
sum of the magnitude of control actions, which is minimized to penalize
the large control actions.
In addition, the objective function 6 can be rewritten with the vector
and matrix form as:

Ji = pixly Xeen +p2(eer — X0 (1 — x¢) + paurt ury + paud; udj, (10)

2.2.3. System constraints

To ensure the safe and feasible operation of the train regulation
strategy, the following constraints should be considered.

Safety constraint. To keep the safety interval between the arrival time
of train j and the departure time of train j —1 at station i:

b—d— 1'% an

Dwelltime constraint. To ensure the dwelltime at each station is
feasible in practice operation, which should be larger than the minimum
dwelltime:

D + ud, + @d'2D; i 12)

Runtime constraint. To ensure the runtime at each section is feasible in
practice operation, which should be larger than the minimum runtime:

R+ WJ; + wr{ZRi.nlin (13)

Control constraint. For the practical limits for the control input, the
following control constraint is considered to ensure the control actions
in acceptable extents:

URimin< ’J<UR1 max
{ i SUTES P a4

UD; in<Sudi LUD; jpa

where, UR;min and UR;mq. are the lower and upper limitations of the
runtime control action from station i to station i + 1; UD; min and UD; max

are the lower and upper limitations of the dwelltime control action at
station i.

In addition, the above system constraints can be rewritten with the
vector and matrix form as:

i1 — D — udy — wdy — 42 i

D + ud, + wd; 2D,

R + ury + ory 2R,y (15)
UR,.i;, <uri<UR,, .«

UD ,in<udi LUD 0,

where, Yimin = [¥1min, Y2min, -+ Prmin] 3
Dpin = [Dl.min,DZ,mim "',Dl,min]T;
Ruin = [Romins R1min, =+ Ri—1,min)" s Romin = 0;
URnin = [UR0min, UR min, -+, URL 1 min] '3
URmax = [URo max; UR1 max, =+, URL1 max] 3
UDmin = [UDl.min; UDZ.mim "ty UDI,min]T;
UDpax = [UD1 max, UD2.max; s UDpmax] -

2.2.4. Optimal control problem

Given the train traffic dynamics, by considering the objective func-
tion and system constraints, the train regulation problem can be
formulated as the following optimal control problem:

Jf
min {p]xZ+1xk+l + P2 (st — x0) " (et — x2) + purqury
k=jo

+p3udk7udk}
st fir = Aty + Tox + R+ ury + ory + D + udy + wdy
Xt = fepr — T
Y.<t — D — ud, — wdy, — 1, (16)
D,in<D + udy + wdy
R,i»<R + ury + wry
URyin Sury SUR
UD,,;,,<ud <UD,
for k € {jo, ...,Jr}-

where, jo is the initial state number; j; is the terminal state number.
Similarly, the traditional train regulation model in the down direction
can be built in the same way withie {I + 1,I + 2,...,2I}.
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2.3. Train regulation model with minimizing overlapping time

2.3.1. Overlapping time between accelerating phases

In real-world operation, an extreme high substation power occurs if
numerous adjacent trains are accelerating simultaneously (Chen et al.,
2005). Considering the up and down directions, the adjacent trains
mean trains departing from adjacent stations in the same direction and
trains departing from the same station in the opposite direction. In this
paper, the overlapping time between accelerating phases is taken as an
indirect evaluation of substation peak power. In previous studies, the
overlapping time between accelerating and braking phases is maximized
to overlap the train accelerating and braking phases (Ning, Zhou, Long,
& Tao, 2018; Yang, Li, Gao, Wang, & Tang, 2013). In this paper, the
overlapping time between accelerating phases is minimized to avoid
overlapping of accelerating phases. As shown in Fig. 3, when trains
accelerate at the same time, the accelerating phases of trains will
overlap. The simultaneous accelerating of trains can be suppressed by
minimizing the overlapping time between accelerating phases, thus to
reduce substation peak power. Based on the calculation of the over-
lapping time between accelerating and braking phases (Ramos, Pena, &
Fernandez, 2007), the model to calculate the overlapping time between
accelerating phases is built in this section.

Let A; be the train accelerating duration from station i to station i +
1, then lJI:JrAi is defined as the end of the accelerating phase of train i
after leaving station j. The overlapping time between train j leaving
station i and train j —1 leaving station i+1 can be divided into six con-
ditions as shown in Table 2. For example, as shown in Fig. 3 (a),
U<t.], 6, 1<t +A; and £ + A;<t] + Aj;1, then the overlapping time is

i+17 z+1\
equal to t’ + A; tl +1» which corresponds to Case 5. Similarly, the

overlapping time between train j leaving station i and train 2I —j+1

Overlapping time=¢/ + 4, -t/

i+l

Speed A
/ Train j-1
L .
/ Train j
J J .:
6o+ Time

(a) adjacent trains in the same direction

. . 27— j+1 Jj
Overlapping time=1,, "/ + 4,, ,., —t

Speed A

/]

Train 2/-j+1

271—j+1 271-j+1
Z‘Zl—i+l 121 i+l +A 21-i+l
Train j
_ : >
J J
f i+ 4 Time

(b) adjacent trains in the opposite direction

Fig. 3. The illustration of the overlapping time between accelerating phases.
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Table 2
Six conditions of the overlapping time.
Case Condition Overlapping time Mly ,7:2 ,7112.3’,711:‘4]
Ul iAcdl<dl 1A, O IRREI
2 gast] + A <d<t + A 0 [0,0,0,0]
3 th <<t + At ) + Aia A [0,1,0,1]
4 g<t i<ty + A <8 + 4 Aiy (1.1,0,0]
5 g<8] <&+ A + A g+ At} (1.1,0.1)
6 O <U<8] + A <€+ A U+ At [0.1,0,0]

leaving station 2I —i +1 (the same station of station i) can also be divided
into six conditions. In this section, the overlapping time between train j
leaving station i and train j —1 leaving stationi+1 is taken as an example
to explain the calculation of overlapping time.

2.3.2. Computation of overlapping time between accelerating phases
In order to distinguish these six conditions, four binary variables

(;1’12‘1,;7{_2, '713 and 11’;4) are introduced, which are defined as:

f< ::@"Til 1

A<t + A o, =1

z.\ i+1 _+l ’1]2 (17)
AR SN =1

t§+A!<t{;} + A ©W’4 =1

Then, the relationship between the beginning and the end of acceler-
ating phases can be expressed by these binary variables, as shown in

Table 2. For example, when tlstl + A,st’ljst{j + A1, [11.12:13,14] =
[1,1,1,1], and the overlap time is equal to zero corresponding to Case 1.
In addition, based on the Transformation Property 1 in Appendix A, the
implication of binary variables 17 can be modelled by the following
linear constraints:

f—d<M(1 = 1,)

ti:—tfﬂ/e*( e,

ti: t: _Az+1<M(1_’7l:)

-1, ,+1/€+( — &),

A <R~ o) o
b+ A=t ze + (m— e,

A=) — A <M(1 —nl,)

ti:""At_’Zi Az+1/5+( )'7{:,4

where, ¢ is a small positive number to transform a strict inequality into
an inequality.

In particular, there is no concurrence when a train begins the
accelerating phase after the end of the accelerating phase of another

train (Case 1: t’ +A<E! J.; or Case 2: ti i A < ¢ )), otherwise there is

concurrence. To describe this condition, a binary variable &, is intro-
duced:

(<UL + A A +A > ) &, = LA, = 0) & (8, = 1) 19

where, 6’:1 =1 means there is concurrence, 5| 71 = 0 means there is no
concurrence. According to the relationship between 1712 17{3 and & iq I
the Eq. 19, (5’111 can be described as:

5?,1 =n,(1— '773) (20)
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In addition, based on the Transformation Property 2 in Appendix A, the
implication of binary variables &’ can be modelled by the following
linear constraints:

51:,1 3'7{:‘2 i3
8, (21)
5{ 1<1 - ’752

Then, the overlapping time 011 can be described as:

0<0),

(22)
M(al ) +[nnn(tJ+Anti+l +Al+l)

max(f},;)]<0]

Considering minimizing the overlapping time, when 5’11 = 1, the second
part of the above equation acts as the only effectual constraint and the
value of overlapping time is depended on

[min(l’; +A;, d+1 +Ai1) —max(t" g

o +1)] corresponding to Case 3 to 6,

where max (], t:j) represents the beginning of the concurrence and
miﬂ(l’} +A;, d+1
other hand, when &, = 0, the left side of the second part of the above

+A;;1) represents the end of the concurrence. On the

equation (~M + [min(t] + At} +Aiq) —max(€,)]

++1)]) is negative, and
the first part acts as the only effectual constraint, then oi = 0 corre-
sponding to Case 1 and 2.

In addition, to define max(t,, ¢} + A1), the

following binary variables (,,,4,,,6., and 4| 5) are introduced:

) and min(, + A, ¢}

D5+l

512 = (1 *’7::‘1)'7{4
Sy =n,(1-n,) (23)
554 :’75,1’714

Similarly, binary variables 6’1:‘2, 5{73, 6’1 4 and 515 can be modelled as Eq. 21
based on the Transformation Property 2 in Appendix A. Binary variables
8,5.6,3,6,4 and &5 correspond to Case 3, 4, 5 and 6 respectively. For

i,2° %13 %4
¢ +A; and max (£, ¢1)

i il

=, then [min(¢] + Ayt +Ai1) —max(€,,1)] =¢ + A~ = A, thus

example, when 6’12 =1 min(t; +A;, l{+1 +Ai1) =

5{:_2 = 1 means that the calculation of overlapping time is based on Case

w

Based on the binary variables 6{1 , 5’1:72, 5’11‘3, &, and 6’1 5, the calculation
of overlapping time Eq. 22 can be rewritten as:

0<0}

M(‘%l + ‘%2 —2) + A<,

M(8], + 85 —2) + A1 <0 24)
M8y + 8}y —2) + (£ + A — .})<0]

M(8), + 85— 2) + (¢] + At — £)<0]

Considering minimizing the overlapping time, the value of oj is depen-
ded on the value of the binary variables &,,,5],,8,,,8, and 8.
example, when 5{1 = 0, the second to fifth constraints of the above
equation do not work, then o] = 0; when &, =&, =1, then &, =
6{ 4= 15 =0, the second part of the above equation is the only effectual
constraint, then o{ = A;.

Besides, on the basis of the train traffic dynamics model, Eq. 24 can
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be rewritten with the vector and matrix form as:

F16, + Foty + Fzo, + F4A<LFs (25)
where, 5 = (51,65 2,...,8511",6] = [6],,8].8]5,64.8]5;

op = [0k, 0572 ... o~ ’] ;A = [A1,A,, ..., A])"; the definitions of F;,
F,,F3,F4 and Fs are given in Appendix B. Meanwhile, the constraints of
binary variables ;71 and 6’1 can also be rewritten with the vector and
matrix form as:

E\ty + Eyny + E3ASE, (26)

G6; + Gon <Gs 27)

2 "'777;(7I]T777}i = [%,1:'711127’711'.37’7}1‘,4]
E1,E3,E3,E4,Gq, Gy and Gs are given in Appendix B.

The above work finishes the computation of the overlapping time in
the same direction. Similarly, the overlapping time in the opposite di-
rection can be expressed in the same way. For the overlapping time in
the opposite direction, the calculation is based on the relationship be-

where, 7, =[5!, 7% ; the definitions of

2A-j+1 21-j+1 _
tween ¢ t’+Al,t21 b1 and 65,0 + Asi.

6, 175}(7 ,...,3,7] and 7 = [ﬁ’{’l,ﬁg’zp..ﬁ}"’]r are introduced to
describe the overlapping time in the opposite direction ox:

Binary variables & =

Flsk + FZII\' + F35k +F4A + Fsik + FGZ<F7 (28)

and, related binary variables should meet the following constraints:

Eity + Eo7j, + E3A 4+ Eyi, + EsA<E, (29)
G5, + Go7j, <G; (30)
where,& = [511175{275{37 i4> 15] ’7’ [’7’117’7’127’71137’714]

o = [0 105 % 0F ) b = [ et L ) s the de-

parture time in the down direction; A = [A;,1,Ar2, ...,AZI]T, is the
accelerating duration in the down direction; the derivation of Eq. 28-30
is given in Appendix B.

In addition, the calculation of overlapping time can be described as
simpler forms:

{ Citi + Co01 + G368 + Can <Cs (31)

Cit + Co0; + C38, + C47j, <Cs

where, the definitions of matrices in the above Eq. 31 are given in Ap-
pendix B.

2.3.3. Joint optimal control problem with minimizing overlapping time

The objectives of the joint optimal control problem are to minimize
the timetable deviation, headway deviation, magnitude of the control
actions (Zhang et al., 2019) and overlapping time between accelerating
phases, which can be described as:

Ji = ple+1xk+l + pa(Xkp1 — Xk)T(Xk+1 — X¢) +P3Mrzurk (32)
+psudy udy + P10y, 011 +p451+]5k+1
where, p4 is the weight coefficient.

In addition, given the new objective function 32, by considering the
traditional train regulation model 16, the joint optimal control problem
with minimizing overlapping time can be formulated as the following
joint optimal control problem:
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I
min Z{PIXZHXHI + P2 (X4 *Xk)T(XkH — Xx) +P3WkTWk
Jo

+psududy + psoy,,0xs1 + Py, Okit }
s.t.  fiy = Aty + Tox + R + ury + ory + D + udy, + wd
Xer1 = byt — T (33)
Citis1 + Co0p41 + C36p41 + Cany <Cs
Citis1 + Co0pst + Cs3641 + Calyy <Cs
System constraints 15

for k € {jo, ....Jr}-

2.4. Train regulation model with minimizing overlapping quantity

2.4.1. Overlapping quantity between accelerating phases

In this section, the overlapping quantity is proposed to replace the
overlapping time as the indirect evaluation of substation peak power.
The overlapping quantity indicates the number of valid overlapping. As
shown in Fig. 4, when the accelerating peak power of train j is close to
the accelerating peak power of train 2I —j—1, there is a valid over-
lapping between these two trains. On the other hand, when the interval
between two accelerating peak power is relatively large, the overlapping
is invalid and the overlapping quantity will not increase. In this paper,
the midpoint of the accelerating phase is regarded as the accelerating
peak power point. For example, t{ +A;/2 is the accelerating peak power
point of train j running from station i to station i + 1. As shown in Fig. 4,
trains are accelerating simultaneously in the valid overlapping situation,
which will cause substation peak power. Thus, the overlapping quantity
is minimized to avoid the substation peak power in this section.

Invalid overlapping

Power A >
Train j-1
s o=t S
N Hi 44,2
Train j
>
J j k
t; ll.l +Ai/2 Time

(a) adjacent trains in the same direction

Valid overlapping
<T

»

Power 4

Train 2/-j-1

T |
20-i+l

2157
Liia Ay /2

Train j

n
>

Time

t l,j +A,/2

i

(b) adjacent trains in the opposite direction

Fig. 4. The illustration of the invalid and valid overlapping between acceler-
ating phases.
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Let 7 be a measure of the validity of overlapping, when the interval
between accelerating phases is larger than 7, the overlapping is invalid,
otherwise, the overlapping is valid. The overlapping between train j
leaving station i and train j —1 leaving station i +1 can be divided into
two conditions as shown in Table 3.

2.4.2. Computation of overlapping quantity between accelerating phases
In order to distinguish these two conditions, as shown in Table 3, a

binary variable ai is introduced:

d=1e|l+4,/2—1| -4 /2|<r (34)

where,

d+Ai/2 €} ~Ai1/2| <7 means that £ +A;/2 £ | ~Ai /257

and ¢ +A;/2 413 —Ai;1/2> —. Then, two binary variables ﬁ{l and ﬂiz
are introduced:

= lel+A/2—00 — A 25t (35)
=1t +A/2—( ] —A /221 (36)

Based on the Transformation Property 2 in Appendix A, the implication
of binary variables ﬁ’ll and /}12 can be modelled by the following linear
constraints:

’Jl:+Ai/2—’f:11 —Ai+1/2—T<A~’1(1 A

. ‘ o 37
ti»+A,~/2—lﬁ} —Ai+1/2—T>—Mﬁ]i.1
= A2+ 5+ A [2 - o<1 - )
. ' o (38)
4 —A,-/2+ﬂ,;} +A,»+1/2—T> - Mp,
In addition, the binary variable 0’]1 can be expressed as:
& = f.f ©9

which means only when ﬁ:l =1and /}12 =1, a{ = 1. The relationship

between o, /| and /}ﬁ_’2 can be modelled by the following linear con-
strains:

(IK :1
N/ (40)
ap, +p, -1

When the interval between accelerating phases of train j leaving station i

and train j—1 leaving station i+1 is less than , a{ = 1, which means
there is valid overlapping. Then, the overlapping quantity can be

expressed as > o}, which is minimized to suppress valid overlapping.
In addition, the calculation of overlapping quantity in the same and
opposite direction can be described as the vector and matrix form as:

{ Bty + Bray + B3 f,<Bs

Bo 4 Bofy<B 41
Bty + By + B3 <B4y 1)

_ _ -nT. k—1. gk—2. . pk—T j
where, a = [@¥1,a572, L0 B = BALASE AT, A=
Table 3
Two conditions of the validity of overlapping.

Case Condition Overlapping ai
1 g+ A2} —Am/z‘gr Valid 1
2 j Invalid 0

g+ A2} ~Au/2| > 7

i
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i T~ k1 ke T, = k=1 k=2 k-l i
PaoBlol s = @1 a5 2 d ) b= By 5B, B LB =
i i T
[ﬁ]m , /};2] ; the definitions of other matrices in the above Eq. 41 are given
in Appendix B.

2.4.3. Joint optimal control problem with minimizing overlapping quantity

The objectives of the joint optimal control problem is to minimize the
timetable deviation, headway deviation, magnitude of the control ac-
tions (Zhang et al., 2019) and overlapping quantity, which can be
described as:

T T T
Je = p1xg X + P2y — X)) (K1 — Xi) + paurgury

. B (42)
+p3udk udk + P5(Xk+1 + P5ak+1

where, Ps = [ps,Ps, .-, Ds)1.13 Ps = [P5: D5, ---» D)1 Ps is the weight co-
efficient.

In addition, given the new objective function 42, by considering the
traditional train regulation model 16, the joint optimal control problem
with minimizing overlapping quantity can be formulated as the
following joint optimal control problem:

Jr
min Z{plkaﬂle + pa(Xess — xk)T(ka —x¢) + paurlur,
Jo

+psud; udy + Psayi1 + Psii }
st fy = Aty + Tox + R+ ury + or + D + udy + wdy
Xt = tigr — Tiqa (43)
Bty + Byay + B3 <Bs
Bty + Byay + B3f<Bs
System constraints 15
for k € {jo, ..., jr}-

3. Algorithm description
3.1. Model predictive control algorithm

In this paper, MPC algorithm is adopted to solve the proposed
optimal control problems (16), (33) and (43). First, since several pa-
rameters in the model, like wry and wdj, are time-dynamics during the
regulation process, the MPC algorithm as an online optimization tech-
nique can handle this character. Second, the MPC algorithm can effec-
tively solve large-scale optimization problems, such as the proposed
nonlinear high-dimensional problems.

MPC is a control algorithm that implements repeatedly optimal
control in a rolling horizon manner. At each sample step k, an optimal
control problem is solved based on the measured current system states at
step k over a L step prediction horizon (k + 1,...,k + L), and a set of
optimal control sequence can be obtained. Then, only the first control
action of the optimal control sequence is applied to the system consid-
ering the dynamics of the system parameters and disturbances. At the
next step k + 1, the optimal control problem is solved again based on the
newly updated system states at step k + 1, and also only the first control
action is applied to the system, and repeat. Specifically, the MPC algo-
rithm for the proposed problem can be described as the following three
components.

Prediction model. The prediction model is used to predict the influ-
ence of control actions on the dynamic system. For the proposed train
regulation problem, the train traffic dynamics model 5 is used to predict
the timetable and headway deviations based on the system states at each
step.

Optimization problem. At each step, a set of optimal control sequence
is obtained by solving the optimization problem over a pre-given pre-
diction horizon. Based on the joint optimal control model with mini-
mizing overlapping time (33), at step k, the optimization problem with
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horizon L can be described as:

L1
min Z{p]x]i+i+1xk+i+l +D2 [xk+i+l - xk+i]T[xk+i+l - Xk+i]

0
+P3'4"Z+,urk+i + p}udjcr+[udk+i + P4OZ+,+1 Oktit1
+ﬁ45[+i+15k+i+1 }
St fiivr = Ay + Toggi + R+ ury + orig + D
+udyyi + wdyy;
Xeyitl = lepivt — Thin
Woin$tiyivs — D — udiyi — 0diy — iy (44)
Dyin€D + udi i + wdyy;
Ryin<R + uryy; + orey;
URyin<utr4 i SUR o
UD,in<udy i SUD g
Citiyiv1 + Co0ryivt + C3bpyivt + Canfyy i1 <Cs
Cityiv1 + Cotrist + Cabisivt + Callyy i1 <Cs
fori e {0,...,.L —1}.

The above optimization Problem 44 is a mixed integer quadratic pro-
gramming (MIQP) problem, which can be solved by several effective
solvers. Similarly, the joint optimal control problem with minimizing
overlapping quantity (43) can be processed as a MIQP problem and the
traditional optimal model (16) can be processed as a quadratic pro-
gramming (QP) problem.

Rolling horizon. When the optimal control sequence is obtained by
solving the optimization problem, the first control action is implemented
to the system. At the next step, the input of the prediction model is the
newly updated system states, the whole prediction horizon is shifted one
step forward, and the optimization problem with newly updated pa-
rameters is solved again.

In addition, the MPC algorithm for the proposed train regulation
problem can be summarized as follows. By applying the MPC algorithm,
the optimal control problem is formulated as a set of MIQP/QP problems
to obtain the control sequence. By choosing a proper prediction horizon
length, the formulated MIQP problems can be solved effectively meeting
the real-time computation requirement. Especially, in Step 2, the de-
parture times of trains in the opposite direction are obtained to formu-
late the optimization problem.

Algorithm 1. MPC algorithm

Set k = jo and initialize the system states

repeat
Step 1: According to the system states and the prediction model, calculate the
predicted states needed for the optimization problem in the prediction horizon from
k+1tok + L.
Step 2: Formulate the optimization problem.
Step 3: Solve the formulated optimization problem to obtain the optimal control
sequence.
Step 4: Apply the first control action of the optimal control sequence, setk =k + 1,
and update the system states.

until k>j;

3.2. The sizes of the optimization problems

The sizes of the optimization problems in MPC algorithm of tradi-
tional train regulation model (TR-T) (16), train regulation model with
minimizing overlapping time (TR-OT) (33) and train regulation model
with minimizing overlapping quantity (TR-OQ) (43) are shown in
Table 4. In addition, the sizes of optimization problems are estimated for
I =13 (corresponding to 26 stations), and L = 2. As shown in Table 4,
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Table 4

The sizes of the optimization problems.
Items Size I1=13, L=2

TR-T TR-OT TR-0Q TR-T TR-OT TR-0Q

Constraints OIL 65IL 29IL 234 1690 754
Continuous variables  5IL 5IL 5IL 130 130 130
Binary variables 0 18IL 6IL 0 468 156

the sizes of the optimization problems TR-OT and TR-OQ are larger than
the size of the optimization problem TR-T. By comparing the optimi-
zation problems TR-OT and TR-OQ, we can observe that the size of the
optimization problem TR-OQ is smaller, which means that using the
overlapping quantity as the indirect evaluation of substation peak power
can reduce the size of the train regulation problem considering the
substation peak power reduction.

4. Numerical examples
4.1. Numerical example conditions

In order to illustrate the effectiveness robustness of the proposed
models and algorithms, one of the Guangzhou metro lines is taken as an
example to implement the numerical examples. This metro line includes
13 stations (i.e., 2 = 26) and 7 substations, as shown in Fig. 5. Both the
up and down direction operation of the metro line are considered in the
numerical examples. Since disturbances occur frequently during peak
hours, the morning peak hours is chosen as the train regulation testing
period. During the morning peak hours, the nominal headway H is 150s,
the minimum departure-arrival interval I;;; is 20s, nominal timetable
parameters are shown in Table 5. The constraints of the magnitude of the
control actions are respectively set as UR;min = —30S, URjmax = 30s,
UDjmin = —20s, UDjmmax = 20s, Vi€ {1, 2, ..., 2I}. In the numerical
examples, 7:00 am is set as Os, which is set as the initial stage (k = 1).
The considered time step horizon (j; —j;) is 19, the departure time of the
first train at station 1 in the up direction is 10s, and the departure time of
the first train at station 14 in the down direction is Os, then the departure
times of trains at station 1 is [10,160, 310, ...,2860]s at station 17 is [0,
150, 300, ..., 2850]s. At stage 1, there is no deviation between the
nominal timetable and the actual timetable. Case studies are tested
under the MATLAB environment on a personal computer with Intel Core
i5 2.30 GHz CPU and 8 GB RAM, and the MIQP and QP problems are
solved by using CPLEX Solver 12.6. Specially, the computation time at
each stage is limited to be 60s.

To validate the effectiveness of the proposed real-time train regula-
tion strategies considering minimizing the substation peak power (TR-
OT and TR-OQ), they are compared with the traditional train regulation
strategy (TR-T) and safe strategy without regulation (TR-S). More details
about these four strategies are as follows:

Strategy TR-S. Safe strategy without regulation, the train regulation
strategies are obtained only considering the system constraints (15). In
the strategy TR-S, control actions are only adopted when the timetable is
infeasible.

Station 7&20
Substation 4

Station 6&21
Station 2&25

Substation 2 Substation 3

Station 4&23
Up direction aton

Station 5&22  Station 9&18
Substation 5

Table 5

Nominal timetable parameters during morning peak hours.
Station Nominal Minimum Accelerating Nominal Minimum
index runtime runtime duration [s] dwelltime dwelltime

[s] [s] [s] [s]

1/26 0/125 0/110 27/0 60/60 45/45
2/25 129/82 110/68 22/28 45/45 30/30
3/24 86/115 75/102 25/24 45/45 30/30
4/23 116/80 103/68 20/22 45/45 30/30
5/22 81/108 71/94 24/20 45/45 30/30
6/21 111/110 98/100 24/20 50/50 30/30
7/20 102/120 91/102 27/28 44/44 30/30
8/19 124/99 115/82 22/25 46/46 30/30
9/18 99/75 93/66 20/25 47/45 30/30
10/17 74/80 65/70 20/20 55/55 45/45
11/16 75/90 66/85 23/25 50/50 30/30
12/15 96/129 85/110 28/20 48/45 30/30
13/14 131/0 120/0 0/28 60/60 45/45

Strategy TR-T. Traditional regulation strategy, the train regulation
strategies are obtained by solving the traditional train regulation opti-
mization problem (16) in the MPC algorithm. In the strategy TR-T,
control actions are adopted to suppress disturbances by minimizing
timetable deviation and headway deviation.

Strategy TR-OT. Regulation strategy considering minimizing the
overlapping time, the train regulation strategies are obtained by solving
the train regulation optimization problem considering minimizing the
overlapping time (33) in the MPC algorithm. In the strategy TR-OT, the
overlapping time is minimized to suppress the substation peak power.

Strategy TR-OQ. Regulation strategy considering minimizing the
overlapping quantity, the train regulation strategies are obtained by
solving the train regulation optimization problem considering mini-
mizing the overlapping quantity (43) in the MPC algorithm. In the
strategy TR-OQ, the overlapping quantity is minimized to suppress the
substation peak power.

4.2. Comparison of different control strategies under pre-set disturbances

In this section, the runtime and dwelltime disturbances are pre-set
artificially, which are shown in Table 6 and Table 7 respectively.
Without loss of generality, the weight coefficients of timetable devia-
tion, headway deviation and control actions are set to be the same (i.e.
p1 =p2 =ps = 1). Meanwhile, in this section, the weight coefficient of
overlapping time p4 in the strategy TR-OT is set to be 1 (i.e. ps = 1), the
weight coefficient of overlapping quantity ps in the strategy TR-OQ is set
to be 1000 (i.e. ps = 1000). The prediction step horizon L is chosen as 2.
The timetable deviations, headway deviations, timetables and train
delays of four strategies are shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9
respectively. The performances of the four strategies are shown in

1
Table 8. Specially, the total timetable deviation is defined as [~;; (x{)z]z,

1

S ol

and the total headway deviation is defined as [Y";;(x] — x, ') I
We compare the proposed strategies with other regulation strategies

in the following aspects. The first aspect regards the timetable deviation.

Down direction

Station 8&19

Station 12&15

Station 11&16
Substation 6

Station 13& 14
Substation 7

Station 10& 17

Fig. 5. The map of one of the Guangzhou metro line.
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Table 6
The pre-set runtime disturbances wr.
Disturbance index 1 3 4 5 6 7 8 9 10 11 12
Stage index 1 1 3 11 11 15 15 4 6 12 15
Station index 3 3 12 10 2 8 16 22 24 15
Intensity [s] 30 30 25 25 30 25 30 20 20 20 30 30
Table 7
The pre-set dwelltime disturbances wd.
Disturbance index 1 2 3 4 5 7 8 9 10 11 12
Stage index 2 2 5 5 13 13 16 16 6 9 14 15
Station index 2 9 9 14 24 8 17 14 14 21 24 18
Intensity [s] 30 25 20 20 20 30 20 30 25 30 30 30
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Fig. 6. The timetable deviations of four strategies under the pre-set disturbances.
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Fig. 7. The headway deviations of four strategies under the pre-set disturbances.

From Fig. 6, we can observe that the timetable deviations are signifi-
cantly reduced in the strategies TR-T, TR-OT and TR-OQ, which in-
dicates the stability of the URT line system under the optimal strategies.
For the strategy TR-T, the timetable deviation at station 3 is reduced
from 30s at stage 2 to Os at stage 8, and trains are operated according to
the nominal timetable as shown in Fig. 8 (b). For the strategies TR-OT
and TR-OQ, the timetable deviations fluctuate in a small range and
have no tendency to propagate as shown in Fig. 8 (¢) and (d). However,
the timetable deviations in the strategy TR-S are propagated to the latter
stations without reduction, as shown in Fig. 8 (a), which will lead to
instability of successive operation. In more details, as shown in Table 8,
compared to the strategy TR-S, the total timetable deviations of the
strategies TR-T, TR-OT and TR-OQ are reduced by 68.20%, 57.80% and
64.07% respectively. Meanwhile, the max timetable deviation is
reduced from 100s to 34s, 39s and 40s respectively. Therefore, under the
pre-set disturbances in this section, the strategy TR-T achieves the best
performance in reducing the timetable deviation, and the strategy TR-

11

OT and TR-OQ both achieve good performance in reducing the time-
table deviation.

The second part is the headway deviation. From Fig. 7, we can
observe that the headway deviations in the strategy fluctuate more
frequently in a larger range in comparison to the strategies TR-T, TR-OT
and TR-OQ. In more detail, as shown in Table 8, compared to the
strategy TR-S, the total headway deviations of the strategy TR-T, TR-OT
and TR-OQ are reduced by 73.84%, 66.86% and 71.84% respectively.
Meanwhile, the max headway deviation is reduced from 100s to 31s, 32s
and 37s respectively. Therefore, under the pre-set disturbances in this
section, the strategy TR-T achieves the best performance in reducing the
headway deviation, and the strategy TR-OT and TR-OQ both achieve
good performance in reducing the headway deviation. The timetables
for train 2 to 7 are shown in Fig. 8 and the delays for train 2 to 4 are
shown in Fig. 9. For the strategy TR-S, the initial train delays are
propagated to the latter stations and the train delays will increase when
new disturbances occurring, as shown in Fig. 8 (a) and Fig. 9 (a). The
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Fig. 8. The timetables for train 2 to 7 of four strategies under the pre-set disturbances.

incremental train delays will influence the nominal operation of suc-
cessive and destroy the stability of the URT metro line system. On the
other hand, the train delays are significantly reduced in the strategies
TR-T, TR-OT and TR-OQ by applying the optimal train regulation stra-
tegies, as shown in Fig. 9 (b), (c) and (d) respectively, which indicates
the stability of the URT line system under the optimal strategies.

The third point concerns the substation peak power. In this paper,
the substation power over 4 MW is regarded as the peak power, it is due
to that the maximum train traction power is around 4 MW. When the
substation power exceeds 4 MW, it means there are multiple trains
accelerating at the same time. As shown in Table 8, for the strategies TR-
OT and TR-OQ, the total overlapping time is reduced from 195s to 174s
and 168s compared to the strategy TR-T respectively, and the total
overlapping quantity is reduced from 115 to 91 and 70 respectively. In
addition, for the strategies TR-OT and TR-OQ, the duration of substation
power over 4 MW is reduced from 753s to 745s and 701s compared to
the strategy TR-T respectively. Under the pre-set disturbances in this
section, by applying the strategies TR-OT and TR-OQ, the duration of
substation peak power can be reduced in comparison to that of the
strategy TR-T with the cost of weakening the effect of reducing the
timetable and headway deviations.

The fourth aspect concerns real-time performance. As shown in
Table 8, the average computation time of the strategies TR-T and TR-OQ
are both less than 1s. The average computation time of the strategy TR-
OT is 22.11s, which is less than the minimum dwelltime (i.e. 30s).

12

However, in the strategy TR-OT, the computation time of solving the
related optimal control problem is larger than 30s at some stages. Thus,
besides the strategy TR-OT with the weight coefficient p; =1, the above
strategies can meet the real-time requirement.

4.3. Comparison of different control strategies under Monte-Carlo scheme

In this section, the train regulation strategies are evaluated in a
Monte-Carlo scheme with respect to 30 different disturbance scenarios,
aiming to better evaluate the effectiveness and robustness of the pro-
posed train regulation methods. This number of scenarios, 30, is suffi-
cient to obtain results with a level of confidence of 90% in train
regulation problems (Ghasempour & Heydecker, 2020). Each scenario is
formulated by sampling both runtime disturbances and dwelltime dis-
turbances from Weibull distributions (Ghasempour & Heydecker, 2020;
Quaglietta, Corman, & Goverde, 2013). We adopt shape parameter 1.5
and scale parameter 8s to produce runtime disturbances, as shown in
Fig. 10 (a). Meanwhile, we adopt shape parameter 1.8 and scale
parameter 4s to produce dwelltime disturbances. Especially, the scale
parameter for dwelltime disturbances at interchange stations (Station 3
and 5) is set to be 6s, as shown in Fig. 10 (b). As shown in Fig. 10 (b), the
probability of big dwelltime disturbances happening at interchange
stations (the red line) is larger than it at other stations (the blue line). For
this experiment, we adopt the same objective weight coefficients as in
the previous section (i.e. py = p» = ps = ps = 1 and ps = 1000), and the
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Fig. 9. The delays for train 2 to 4 of four strategies under the pre-set disturbances.

Table 8

The performances of four strategies under the pre-set disturbances.
Type of strategy TR-S TR-T TR-OT TR-0Q
Total timetable deviation [s] 372.15 11836 157.06 133.70
Max timetable deviation [s] 100 34 39 40
Total headway deviation [s] 465.40 121.75 154.24 131.09
Max headway deviation [s] 100 31 32 37
Total overlapping time [s] 178 195 175 168
Total overlapping quantity 94 115 91 70
Duration of substation power over 4 MW 708 753 745 701

[s]

Average computation time [s] / 0.08 22.11 0.22
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prediction step horizon L as 2. Since the train regulation strategies are
evaluated in the Monte-Carlo scheme, the results are presented as
average over the 30 disturbance scenarios considered. The performances
(average of 30 scenarios) of four strategies are shown in Table 9.

From Table 9, we can observe that the timetable and headway de-
viations are significantly reduced in the strategies TR-T, TR-OT and TR-
0OQ, in comparison to the strategy TR-S. In terms of suppressing dis-
turbances, the strategy TR-T achieves the best performances both in
minimizing the timetable and headway deviations. In the strategy TR-T,
the total timetable deviation is reduced to the minimum value, 330.89s,
and the max timetable deviation is reduced to the minimum value,
41.21s. Meanwhile, the total headway deviation is reduced to the min-
imum value, 104.38s, and the max headway deviation is reduced to the
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Table 9
The performances (average of 30 scenarios) of the four strategies under the
Monte-Carlo scheme.

Type of strategy TR-S TR-T TR-OT TR-0Q
Total timetable deviation [s] 1132.26 330.89 347.26 341.02
Max timetable deviation [s] 165.43 41.21 44.26 42.81
Total headway deviation [s] 291.54 104.38 107.82  106.87
Max headway deviation [s] 58.50 22.57 23.21 23.21
Total overlapping time [s] 167.92 191.45 148.67 172.24
Total overlapping quantity 72.37 86.10 48.57 67.70
Duration of substation power over 4 629.43 1015.33  765.00  894.17
MW [s]
Average computation time [s] / 0.05 8.69 0.18

minimum value, 22.57s. In terms of suppressing substation peak power,
the strategies TR-OT and TR-OQ have better performances in reducing
the duration of substation power over 4 MW in comparison to the
strategy TR-T. By comparing the performances of the strategies TR-OT
and TR-OQ, we can observe that the strategy TR-OT with weight coef-
ficient p4 = 1 have better performances in suppressing substation peak
power in comparison to the strategy TR-OQ with coefficient ps = 1000,
with the cost of weakening the effect of reducing the timetable and
headway deviations. In terms of computation efficiency, the average
computation times of the strategy TR-T and TR-OQ are both less than 1s,
which meets the real-time requirements. Due to the complexity of the
optimization problem solved at each stage, the average computation
time of the strategy TR-OT reaches a large value, 8.69s.

In addition, we test cases where all disturbances are known in
advance under the Monte-Carlo scheme, aiming to evaluate that how
much is lost to the real-world disturbances. The performances of cases
where all disturbances are known in advance are shown in Table 10. In

Table 10
The performances of cases where all disturbances are known in advance under
the Monte-Carlo scheme.

Type of strategy TR-T TR-OT TR-0Q
Total timetable deviation [s] 38.64 80.22 70.81
Max timetable deviation [s] 6.36 12.25 9.68
Total headway deviation [s] 17.22 13.95 15.19
Max headway deviation [s] 3.45 2.82 4.07
Total overlapping time [s] 197.39 109.63 145.80
Total overlapping quantity 124.23 25.40 84.27
Duration of substation power over 4 MW [s] 723.83 628.73 696.73
Average computation time [s] 0.40 11.85 0.22
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comparison to cases where all disturbances are unknown in advance, as
shown in Table 9, it is clear that the total timetable and headway de-
viations of cases that all disturbances are known in advance can be
significantly reduced. For example, the total timetable deviation can be
reduced from 330.89s to 38.64s by getting disturbance information in
advance.

4.4. Comparison of different prediction horizon length L

In this section, we analyze the impact of the prediction horizon
length L on the computational complexity and regulation performances.
The strategies TR-T, TR-OT and TR-OQ with different prediction horizon
lengths are evaluated under the Monte-Carlo scheme with respect to 30
different disturbance scenarios. The results of the strategies TR-T, TR-OT
and TR-OQ are shown in Tables 11-13 respectively. It is clear that with
the increase of prediction horizon length L from 1 to 5, the average
computation times of the strategies TR-T, TR-OT and TR-OQ increase.
Although the computation time quickly increases from L =2to L = 3,
higher values for L do not seem to negatively impact solving times of the
strategy TR-OT as much. It is due to the pre-set computation time limit at
each stage. Meanwhile, the sizes of the optimization problems, as shown
in Table 4, reflect that the prediction horizon length L has a significant
impact on the computation complexity. On the other hand, the regula-
tion performances are influenced by the prediction horizon length L.
When L increases from 1 to 2, the performances are improved signifi-
cantly in all strategies, as shown in Table 11, Table 12 and Table 13, like
the total timetable deviation of the strategy TR-OT is reduced from
418.29s to 347.26s. However, when L increases from 2 to 5, the

Table 11
The performances of TR-T strategy with different prediction horizon length L.
Value of L 1 2 3 4 5
Total timetable 407.36 330.89 318.35 315.96 315.49
deviation [s]
Max timetable 47.21 41.21 40.25 40.07 40.04
deviation [s]
Total headway 103.31 104.38 104.48 104.48 104.48
deviation [s]
Max headway 22.84 22.57 22.54 22.53 22.53
deviation [s]
Total overlapping time 199.05 191.45 190.54 190.39 190.36
[s]
Total overlapping 93.2 86.10 85.6 85.57 85.53
quantity
Duration of substation 1032.83 1015.33 1013.13 1014.90 1015.17
power over 4 MW [s]
Average computation 0.02 0.05 0.13 0.22 0.51

time [s]
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Table 12

The performances of TR-OT strategy with different prediction horizon length L.
Value of L 1 2 3 4 5
Total timetable deviation [s] 418.29  347.26  337.03 33526  334.93
Max timetable deviation [s] 50.18 44.26 43.42 43.28 43.25
Total headway deviation [s] 107.58 107.82 107.85 107.84 107.84
Max headway deviation [s] 23.74 23.21 23.17 23.17 23.16
Total overlapping time [s] 148.25  148.67 148.31 148.15 148.11
Total overlapping quantity 47.73 48.57 47.87 47.70 47.70
Duration of substation power 757.97  765.00 767.83 768.03  767.60

over 4 MW [s]

Average computation time [s] 0.38 8.69 318.53 408.32 432.79

Table 13

The performances of TR-OQ strategy with different prediction horizon length L.
Value of L 1 2 3 4 5
Total timetable deviation [s] 413.89 341.02 330.35 328.88 328.70
Max timetable deviation [s] 48.97 42.81 42.00 41.91 41.90
Total headway deviation [s] 106.76  106.87 109.31  109.28  109.23
Max headway deviation [s] 23.89 23.21 25.40 25.36 25.36
Total overlapping time [s] 179.68  172.24 171.54  171.50 171.51
Total overlapping quantity 73.20 67.70 68.13 68.07 68.10
Duration of substation power 891.13 894.17 895.83  895.57  895.00

over 4 MW [s]

Average computation time [s] 0.06 0.18 0.41 0.65 0.97

performances are not improved with the cost of computation time in-
crease. Therefore, considering the computational complexity and regu-
lation performances, it is reasonable to set the prediction horizon length
L as 2.

4.5. Comparison of different objective weight coefficients

To balance the objectives better, we aim to conduct the sensitivity
analysis for the weight coefficients p4 and ps. The weight coefficient p4 is
related to the overlapping time, and ps is related to the overlapping
quantity. By only changing weight coefficients p4 or ps, its effects on the
regulation performances are evaluated. In this section, two groups of
numerical experiments are set up under the Monte-Carlo scheme. In the
first group, the weight coefficient p, is changed with the values of 0, 1,
10, 100 and 1000, to analyze the effect of the overlapping time on the
regulation performances. And, in the second group, the weight coeffi-
cient ps is changed with the values of 0, 100, 500, 1000, and 20000, to
analyze the effect of the overlapping quantity on the regulation per-
formances.

Table 14
The performances of TR-OT strategy with different objective weight coefficient
P4.

Value of ps 0 1 10 100 1000
Total timetable deviation [s] 330.89 347.26 43450 508.26 572.18
Max timetable deviation [s] 41.21 44.26 59.80 85.43 94.45
Total headway deviation [s] 104.38 107.82 135.63 251.14 323.63
Max headway deviation [s] 22.57 23.21 34.61 66.19 80.44
Total overlapping time [s] 191.45 148.67 112.65 92.61 85.71
Total overlapping quantity 86.10 48.57 27.07 19.17 16.63
Duration of substation 1015.33  765.00 528.60 478.80  468.43
power over 4 MW [s]
Average computation time 0.05 8.69 28.62 78.77 94.44

[s]
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Table 15
The performances of TR-OQ strategy with different objective weight coefficient

Ps.

Value of ps 0 100 500 1000 2000
Total timetable deviation [s] 330.89 339.09 341.02 341.02 341.03
Max timetable deviation [s] 41.21 42.44 42.81 42.81 42.81
Total headway deviation [s] 104.38 106.43 106.87 106.87 106.87
Max headway deviation [s] 22.57 22.83 23.21 23.21 23.21
Total overlapping time [s] 191.45 17413  172.24 17224 172.24
Total overlapping quantity 86.10 69.77 67.70 67.70 67.70
Duration of substation 1015.33 900.23 894.17 894.17 894.17
power over 4 MW [s]
Average computation time 0.05 0.24 0.18 0.18 0.16

[s]

As shown in Table 14, the weight coefficient p4 has a significant
influence on the duration of substation power over 4 MW. The duration
of substation power over 4 MW decreases as the value of p, increases.
The duration is 765.00s with ps = 1, and the duration is reduced to
468.43s when p; = 1000. However, at the same time, the total timetable
deviation increases from 347.26s to 572.18s, and the total headway
deviation increases from 107.82s to 323.63s. Therefore, it is necessary to
balance the objective of reducing the substation peak power and the
objectives of reducing the timetable and headway deviations by picking
a suitable value of p4. Meanwhile, the weight coefficient ps has the same
influence on the objectives. As shown in Table 15, when the value of ps
increases, the duration of substation power over 4 MW decreases, and
the timetable and headway deviations increase. Specially, when ps in-
creases from 500 to 2000, there is no significant change in the perfor-
mances, like the duration of substation power over 4 MW maintains at
894.17s. It is the limitation of substation peak power reduction that can
be achieved through the strategy TR-OQ. By comparing the strategies
TR-OT and TR-OQ with different objective weights, it is clear that the
strategy TR-OT has more potential for suppressing substation peak
power.

5. Conclusions

In this paper, we studied the real-time train regulation optimization
problem under disturbances to suppress the train delays and substation
peak power. We introduced two novel indirect indicators (i.e. over-
lapping time between accelerating phases, overlapping quantity be-
tween accelerating phases), which were minimized to reduce substation
peak power in the train regulation problem. In addition, based on the
train traffic dynamics model, we developed joint optimal train regula-
tion models for minimizing the timetable deviation, headway deviation
and substation peak power. To capture the model complexity and real-
time requirements for the train regulation problem, real-time control
algorithms based on MPC were designed, in which the optimal train
regulation strategies were generated at each control cycle.

Numerical examples based on one of the Guangzhou metro lines
were implemented to demonstrate the performance of the proposed
approaches. The computational results showed that train regulation
strategies considering substation peak power reduction can effectively
minimize the duration of peak power and the timetable and headway
deviations. Moreover, the computation time of generating the optimal
solution with minimizing the overlapping quantity by the MPC algo-
rithm was only around 0.2s, which satisfied the real-time requirement.

Our future research will focus on the train regulation problem under
large perturbations (disruptions). This paper only deals with the train
regulation problem under small perturbations (disturbances). On the
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Appendix A. Transformation properties

Based on the study (Bemporad & Morari, 1999), two transformation properties are introduced.
Transformation Property 1. Consider the statement f(i)so, where,7 : R"SR is affince, x €  with yCcR".
The condition f(;)so can be expressed by a logical variable § € {0, 1},)7(;)<0 & 6 =1 is equivalent to
{[({KMU ) (45)
Jf(x)ze + (m—€)d

where, M = max}(;) andm = minjf(;).
Transformation Property 2. The product of two logical variables 5,5, can be replaced by an auxiliary logical variable §3 = 6183, i.e. [§5 = 1] < [61 =
1] and [5; = 1], which is equivalent to

—6; + 03<0
—8, + 8;<0 (46)

) + 0, — 01

Appendix B. Definition of matrices

The definitions of matrices in Eqgs. (25)-(31) are as follows:

000 00
M M 0 0 0
A=|M 0 M 0 0
M 0 0 MO
MO0 0 0 M

fo =10,0,0,1,-1]"; fs =[0,0,0,-1,1)"; fu = [-1,-1,-1,-1,-1]";
fs =100,1,0,1,0]"; fo =[0,0,1,0,1]%; £, = [0,2M,2M,2M,2M]".
Fy = diag{f1}s;.s3 F3 = diag{fa}s;,. s Fs = [f7:£75 -5 f7lsiens

(o fs 0 0 .. fs fo 0 O

0 f2 f3 O 0 f5 fo O

0 o oo fo fs 0 o i fs fs

L0 o o o foleu 0 o o S5y
e =[1,-1,1,-1,1,-1,1,-1"; ¢, = [-1,1,-1,1,-1,1,-1,1]%;

M e-m 0 0_ 0 o0 o0 o "
=0 0 MemoO 0 0 0 |.

0 0 0 0 Me-m2O O0_

L O 0 0 0 0 0 M e€—m

e, =[0,0,0,0,1,-1,1,-1]"; es = [0,0,-1,1,0,0,-1,1]";
eg = [1\7[, —&e,M,—&,M,—¢,M, —€";

eq e 0 O es es 0 O
0 ey e 0 0 e4 €5 0
0 e . €1 e 0 e4 €5
0 P 2 1 8IxI 0 e4 8IxI
E> = diag{es}gr ar; E4 = [€6; €65 ---; €611
-1 11 0 00 0 00 0 00 o0 o0 o0]”
0 00 -111 0 00 0 0O0 0 0O
@#=/0 00 0 00 -111 0 00 0 0 O0f;
0 00 0 00 O 0O -111 0 00
|0 0O 0 00 0 0O 0 00O -1 11
o o o -1 o 1 1 -1 01 -1 0 -1 1 o]"
{1 -1 0o o 0o 0 0O O 0O O O O O Of.
=141 0 -1 0 0 0 0 0 00 0O 0 0O 0O’
l0 0o 0 1 -10 -1 0 11 0 -1 -10 1
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g =1[0,0,1,0,0,1,0,0,1,1,0,0,-1,1,1]";

Gy = diag{g1 }157.55 G2 = diag{g2}15pars G3 = [83;83; -
[Fy F
E; 12)3 0
C1 = 0 5 Cz = . 5 C3 = >
(:) 0 | 281 ((;)
L 28IxI 1 1 28151
[0
: Fs — F4A
C4 = 0 5 Cs = E4 — E3A 5
By Gs 281x1
L G2 | 2141

The definitions of 77 15 7.y, 7.5 and 77 4 are as follows:
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F4 = diag(fs)sy, s F7 = diag(f7)sp.15
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The definitions of 5{ 1 5’1 2 6’1 35 81 4 and 5 are as follows:
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The definitions of matrices in Eq. 41 are as follows:
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