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A B S T R A C T   

In high-frequency metro lines, train delays and substation peak power often occur, affecting safe and efficient 
train operation. In this paper, we propose real-time train regulation methods considering substation peak power 
reduction, in which runtimes and dwelltimes are adjusted to minimize the timetable and headway deviations and 
avoid multiple train accelerating. Firstly, we proposed two indirect indicators, i.e. overlapping time between 
accelerating phases and overlapping quantity between accelerating phases, which are minimized to suppress 
substation peak power in joint optimal train regulation models. The joint optimal train regulation models are 
based on the traditional real-time train regulation model considering the train traffic dynamics and control 
constraints. For the real-time requirement of train regulation, model predictive control (MPC) algorithms are 
designed to solve the formulated joint optimal control models, which generate the optimal train regulation 
strategies at each control cycle based on the real-time updated feedback system states. Finally, numerical ex
amples based on one of the Guangzhou metro lines are implemented to verify the effectiveness and robustness of 
the proposed methods. The results show that the train regulation strategy with minimizing the overlapping 
quantity can not only suppress train delays and substation peak power, but also meet the real-time computation 
requirement.   

1. Introduction 

Urban rail transit (URT) systems play an important role in urban 
public transportation, especially in big cities (e.g. Tokyo, Paris, and 
Beijing). Trains in URT systems are keeping high-frequency to meet 
large passenger transportation demands. However, due to the high- 
frequency operation and crowded environments, perturbances often 
occur in URT systems, which will cause train delays. If the train delays 
cannot be suppressed in time, they will spread to subsequent trains and 
stations. In addition, the train delays will affect the quality of service and 
even cause system interruptions (Yin, Tang, Yang, Gao, & Ran, 2016). 

To suppress the train delays, train regulation strategies are applied to 
adjust disturbed timetables. Arrival and departure times are adjusted 
under small perturbances (i.e. disturbances), and the plan of train ser
vices is also adjusted under big perturbances (i.e. disruptions) (Hong 
et al., 2021). Minimizing timetable deviation and headway deviation are 
two main goals of train regulation, in which the first term is used for 
improving the commercial speed and the second term is used to improve 
the regularity of headway (Zhang, Li, & Yang, 2019). In addition, 

considering the issue of environmental sustainability, energy-saving is 
also considered in the train regulation strategy (Lin & Sheu, 2011; Sheu 
& Lin, 2012). 

On the other hand, the high substation peak power is also a major 
problem in high-frequency URT systems, which affect the safe and 
efficient operation of trains. Although, some researches in literature 
(Bärmann, Martin, & Schneider, 2021; Chen, Lin, & Liu, 2005; Jin, Feng, 
Wang, Sun, & Fang, 2021) begin to stress this problem, in which time
tables are optimized to suppress peak power in scheduling processes. To 
the best of our knowledge, there is no train regulation study combining 
substation peak power reduction. Based on this, the aim of this paper is 
to determine the train regulation strategy considering suppressing the 
substation peak power, so as to ensure the stability of URT systems. 

1.1. Literature review 

The train regulation problem for URT systems is usually formulated 
as an optimization problem and solved by different algorithms. Pelle
grini, Marlière, Pesenti, and Rodriguez (2015), Pellegrini, Pesenti, and 
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Rodriguez (2019) formulated the train regulation problem into a mixed 
integer linear programming model and designed a heuristic algorithm to 
find the optimal train rescheduling plans. Schön and König (2018) 
presented a multi-stage stochastic dynamic programming model for the 
train regulation problem, in which uncertainties over future delays were 
considered. Based on the alternative graph method, Ariano, Corman, 
Pacciarelli, and Pranzo (2008) described the train regulation problem as 
a job shop scheduling problem. They made use of a branch-and-bound 
algorithm for sequencing train movements and developed a local 
search algorithm for train rerouting optimization purposes. In addition, 
tabu search algorithm (Corman, D’Ariano, Pacciarelli, & Pranzo, 2010), 
heuristic algorithm (Corman, D’Ariano, Pacciarelli, & Pranzo, 2012) and 
variable neighbourhood search algorithm (Samà, D’Ariano, Corman, & 
Pacciarelli, 2017) were applied to solve the train regulation problem 
based on the alternative graph method, aiming to reduce computation 
cost. For achieving real-time application of train regulation strategies, 
Šemrov, Marsetič, Žura, Todorovski, and Srdic (2016) introduced a train 
regulation method based on reinforcement learning to reduce compu
tation time. Wang et al. (2021) developed a two-stage approach to 
enhance computational efficiency, where a small-size optimization 
problem was solved in the first stage and a mixed integer linear pro
gramming problem was solved in the second stage according to the first 
stage solution. Li, Li, Liu, Gao, and Yang (2021) proposed a decompo
sition method based on the alternating direction method of multipliers 
to divide the train regulation problem into many sub-problems, one for 
each train. Each sub-problem could be computed in a distributed 
manner to realize real-time control. 

Based on the discrete-event traffic model, some studies solved the 
real-time train regulation problem based on model predictive control 
(MPC). MPC is a model-based closed-loop control framework that adopts 
a strategy of rolling optimization and thus repeatedly optimizes control 
actions in real-time, which not only reduces the computation cost but 
also improve the robustness of control actions (Zhang, Li, Wang, Wang, 
& Yang, 2021). MPC has been widely applied in transportation systems 
for trajectory following (Wang, Zha, & Wang, 2021), energy manage
ment (Novak, Lesic, & Vasak, 2018), and traffic control (Sirmatel & 
Geroliminis, 2021; Wu, Li, Xi, & De Schutter, 2021). More details about 
the application of MPC in engineering fields can be seen in the study 
(Schwenzer, Ay, Bergs, & Abel, 2021). For the train regulation problem, 
Campion, Van Breusegem, Pinson, and Bastin (1985) proposed a state- 
space model to describe the traffic dynamics, and set minimizing the 
timetable and headway deviations as the model objectives. They applied 
the one-step optimal control to achieve real-time state feedback control. 
Breusegem, Campion, and Bastin,. (1991) established a discrete-event 
traffic model of metro lines and designed a state feedback control al
gorithm to ensure system stability. This model was useful to analyze the 
stability of the URT train regulation problem. Grube and Cipriano 
(2010) presented a novel strategy based on MPC for real-time control of 
URT systems. The strategy was computed using genetic algorithms at 
each control cycle. Wang, Li, Su, and Tang (2019) designed a fuzzy 
predictive controller to reduce train delays considering fuzzy passenger 
arrival rate. Moaveni and Najafi (2018) designed a robust MPC algo
rithm to compensate the disturbances and to regulate traffic in the 
presence of operational constraints, in which an uncertain model is 
considered to accommodate variation in passenger demand. Wang, Zhu, 
Li, Yang, and De Schutter (2022) proposed a novel two-layer hierar
chical model predictive control method combining train regulation and 
train control for minimizing train delays and cancellations. By applying 
MPC, the original train regulation optimization problem could be split 
into a set of convex quadratic programming problems, which could be 
calculated efficiently and satisfied the real-time control requirement (Li, 
Yang, & Gao, 2019). 

In the optimal train regulation problem, minimizing the impact of 
disturbances is the main optimization goal, and energy-saving 
rescheduling is also a hot topic in recent years (Li et al., 2020). Lin 
and Sheu (2011) built a traffic-energy model to characterize the 

complicated dynamics with regard to the traffic and the energy con
sumption of train running processes. They designed an adaptive- 
optimal-control algorithm to optimize train regulation strategies 
through reinforcement learning. Sheu and Lin (2012) proposed a dual 
heuristic programming to obtain the energy-saving train regulation 
strategy via station dwell time adjusting and running process coasting 
control. Yin et al. (2016) established a stochastic model jointly consid
ering the time delay of affected passengers, passenger total traveling 
time and operational costs of trains, which was solved by an approxi
mate dynamic programming approach within a short computation time. 
Zhang et al. (2019) combined minimizing the energy consumption into 
the objective function of the train regulation problem, and designed a 
MPC algorithm to obtain optimal train regulation strategies in real-time. 

On the other hand, reducing substation peak power has been 
considered in the train timetable optimization problem, which keeps the 
safe and efficient operation of trains. Chen et al. (2005) built a timetable 
optimization model to avoid simultaneous accelerating of multiple 
trains, aiming to reduce maximum traction power, which was solved by 
genetic algorithms. Jin et al. (2021) transformed the timetable optimi
zation model considering peak power reduction into a mixed integer 
programming model, which could only be solved offline due to its 
complexity. Bärmann et al. (2021) proposed a specially tailored exact 
Benders algorithm to calculate an optimal timetable with less simulta
neous train accelerating, so as to limit peak consumption and improve 
the stability of substations. However, there is no work considering 
reducing peak power in the train regulation problem. 

1.2. Proposed approach and contributions 

As shown above, a variety of studies have focused on the train 
regulation problem, part of them establish complicated optimization 
models considering multiple optimization goals, like minimizing time
table deviation, minimizing headway deviation, and energy-saving. 
Meanwhile, many of them propose novel algorithms to obtain the 
optimal train regulation strategy within a short computation time aim
ing to achieve real-time control. This paper focuses on employing the 
MPC algorithm to the train regulation problem under small perturba
tions (disturbances) for metro lines, in which substation peak power is 
reduced by avoiding simultaneous train acceleration. Although studies 
(Bärmann et al., 2021; Chen et al., 2005; Jin et al., 2021) have stressed 
reducing substation peak power in the timetable optimization problem, 
the proposed offline optimization methods are not suitable for applying 
to the real-time train regulation problem. Specifically, we aim to make 
the following contributions to the study of the train regulation problem. 

(1) Train regulation models, which consider train traffic dynamics 
and substation peak power, are formulated. Two indirect indicators (i.e. 
overlapping time between accelerating phases, overlapping quantity 
between accelerating phases) are introduced to express the substation 
peak power, which are minimized to reduce peak power. In addition, the 
proposed models are rebuilt into MIQP problems for better solving. 

(2) MPC algorithms are developed to produce the optimal train 
regulation strategies reducing the influence of disturbances and sub
station peak power in real-time. By applying MPC, the complex MIQP 
problems are divided into a set of simple MIQP problems. At each con
trol cycle, optimal control actions are obtained by effectively solving 
these subproblems, which satisfies the real-time control requirement. 

The rest of this paper is organized as follows. In Section 2, we give a 
description of the metro train regulation problems considering substat
ion peak power reduction in an open metro line. Then, we propose the 
solution methodology for the metro train regulation problems based on 
MPC in Section 3. In Section 4, we give numerical examples based on one 
of the Guangzhou metro lines, to demonstrate the effectiveness and 
robustness of the proposed approaches. We conclude this paper in Sec
tion 5. 
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2. Problem description 

In this paper, we consider a metro line with 2I stations, where J trains 
orderly run through stations, as shown in Fig. 1. 

2.1. Notations and parameters 

For modelling convenience, Table 1 firstly gives all the relevant 
notations and parameters used in this paper. 

2.2. Traditional train regulation model 

2.2.1. Train traffic dynamics model 
Based on the discrete-event model proposed by V.V. Breusegem et al. 

(1991), the train traffic dynamics model is formulated. The train traffic 
dynamics for the actual departure time of train j at station i+1 can be 
described as: 

tj
i+1 = tj

i + rj
i + dj

i+1 (1)  

which is actually the actual departure time of train j at station i plus the 
actual runtime from station i to station i+1 and the actual dwelltime at 
station i + 1. 

The actual runtime of train j from station i to station i+1 can be 
described as: 

rj
i = Ri + urj

i +wrj
i (2)  

which is usually affected by uncertain runtime disturbance wrj
i, and 

control action urj
i is applied to reduce the effect of the disturbance. 

Meanwhile, the actual dwelltime of train j at station i+1 is affected 
by uncertain dwelltime disturbance wdj

i+1, and control action udj
i is 

applied: 

dj
i+1 = Di+1 + udj

i+1 +wdj
i+1 (3) 

In addition, by combining Eq. 1–3, the train traffic dynamics model 
can be described as: 

tj
i+1 = tj

i +Ri +Di+1 + urj
i + udj

i+1+wrj
i +wdj

i+1 (4) 

Besides, let k represent the stage, the actual departure time at stage k 
is described as the matrix form tk = [tk− 1

1 , tk− 2
2 ,…, tk− I

I ]
T (Li, Dessouky, 

Yang, & Gao, 2017; Wang, Li, Tang, & Yang, 2022), which denotes the 
departure times of trains at all the stations. Based on Eq. 4, the matrix 
form of the train traffic dynamics model in the up direction can be 
described as: 

tk+1 = Λtk + T0,k +R+D+ urk + udk +wrk +wdk (5)  

where, urk = [urk
0, urk− 1

1 ,…, urk− I+1
I− 1 ]

T
, urk

0 = 0; udk =

[udk
1, udk− 1

2 ,…, udk− I+1
I ]

T
; wrk = [wrk

0,wrk− 1
1 ,…,wrk− I+1

I− 1 ]
T
, wrk

0 = 0; 

wdk = [wdk
1,wdk− 1

2 ,…,wdk− I+1
I ]

T
; R = [R0,R1,…,RI− 1]

T
, R0 = 0; D =

[D1,D2,…,DI]
T; Λ = [Λij]I×I, with Λij = 1 for i = j+1 and Λij = 0 

otherwise; T0,k = [Tak
1, 0,…,0]T1×I,Tak

1 is the departure time of train k at 

station 1, Tak+1
1 = Tak

1 + H. To better illustrate the variation of the state 
variable in Eq. 5, the illustration of the transfer from stage k to stage k+1 
is shown in Fig. 2. Control actions urk and udk are applied to suppress the 
influence of deviations wrk and wdk at stage k. 

2.2.2. Objective functions 
The objectives of the traditional train regulation problem for metro 

lines is to minimize the timetable deviation, headway deviation and 
magnitude of the control actions (Zhang et al., 2019), which can be 
described as: 

J = p1
∑

i,j
(xj

i)
2
+ p2

∑

i,j
(xj

i − xj− 1
i )

2
+ p3

∑

i,j
(urj

i)
2
+ p3

∑

i,j
(udj

i)
2 (6)  

where, p1, p2 and p3 are the weight coefficients. 
The first part in the objective function 6 represents the sum of 

timetable deviation, which is reduced to suppress delay propagation. 
The actual departure times will deviate from the nominal scheduling due 
to disturbances. The deviation from the nominal timetable of train j at 
station i+1 can be defined as: 

xj
i+1 = tj

i+1 − Tj
i+1 (7) 

Fig. 1. The illustration of the metro line.  

Table 1 
Notations and parameters.  

Index Description 

i Index of stations, 1⩽i⩽2I, [1,…, I] for the up direction and 
[I+1,…,2I] for the down direction 

j Index of trains, 1⩽j⩽J  

Parameters Description 

Tj
i 

Nominal departure time of train j at station i 
Ψi,min Minimum departure-arrival interval at station i 
Di Nominal dwelltime at station i 
Di,min Minimal dwelltime at station i 
H Nominal headway 
Ri Nominal runtime from station i to station i + 1 
Ri,min Minimum runtime from station i to station i + 1 
Ai Accelerating duration from station i to station i + 1  

State variables Description 

tji Actual departure time of train j at station i 

dj
i 

Actual dwelltime of train j at station i 

rj
i 

Actual runtime of train j from station i to station i + 1 

xj
i 

Deviation of train j from nominal departure time at station i 

oj
i 

Overlapping time between train j leaving station i and train j − 1 
leaving station i + 1 

wdj
i 

Disturbance of dwelltime of train j at station i 

wrj
i 

Disturbance of runtime of train j from station i to station i + 1  

Decision 
variables 

Description 

udj
i 

Control action of dwelltime of train j at station i 

urj
i 

Control action of runtime of train j from station i to station i + 1  
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which can be rewritten as the following vector and matrix form: 

xk+1 = tk+1 − Tk+1 (8)  

where, xk = [xk− 1
1 , xk− 2

2 ,…, xk− I
I ]

T; Tk = [Tk− 1
1 ,Tk− 2

2 ,…,Tk− I
I ]

T . 
The second part in the objective function 6 represents the sum of 

headway deviation, which is minimized to keep the regularity of 
headway and thus reduce passenger waiting time. The headway be
tween train j and train j − 1 at station i also deviates from the nominal 
headway H, which can be defined as: 

(tj
i+1 − tj− 1

i+1) − H = xj
i+1 − xj− 1

i+1 (9) 

The third and fourth parts in the objective function 6 represent the 
sum of the magnitude of control actions, which is minimized to penalize 
the large control actions. 

In addition, the objective function 6 can be rewritten with the vector 
and matrix form as: 

Jk = p1xT
k+1xk+1 + p2(xk+1 − xk)

T
(xk+1 − xk)+ p3urT

k urk + p3udT
k udk (10)  

2.2.3. System constraints 
To ensure the safe and feasible operation of the train regulation 

strategy, the following constraints should be considered. 
Safety constraint. To keep the safety interval between the arrival time 

of train j and the departure time of train j − 1 at station i: 

tj
i − dj

i − tj− 1
i ⩾Ψi,min (11) 

Dwelltime constraint. To ensure the dwelltime at each station is 
feasible in practice operation, which should be larger than the minimum 
dwelltime: 

Di + udj
i +ωdj

i⩾Di,min (12) 

Runtime constraint. To ensure the runtime at each section is feasible in 
practice operation, which should be larger than the minimum runtime: 

Ri + urj
i +ωrj

i⩾Ri,min (13) 

Control constraint. For the practical limits for the control input, the 
following control constraint is considered to ensure the control actions 
in acceptable extents: 
{

URi,min⩽urj
i⩽URi,max

UDi,min⩽udj
i⩽UDi,max

(14)  

where, URi,min and URi,max are the lower and upper limitations of the 
runtime control action from station i to station i + 1; UDi,min and UDi,max 

are the lower and upper limitations of the dwelltime control action at 
station i. 

In addition, the above system constraints can be rewritten with the 
vector and matrix form as: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tk+1 − D − udk − ωdk − tk⩾Ψmin
D + udk + ωdk⩾Dmin
R + urk + ωrk⩾Rmin
URmin⩽urk⩽URmax
UDmin⩽udk⩽UDmax

(15)  

where, Ψmin = [Ψ1,min,Ψ2,min,⋯,ΨI,min]
T ; 

Dmin = [D1,min,D2,min,⋯,DI,min]
T; 

Rmin = [R0,min,R1,min,⋯,RI− 1,min]
T
,R0,min = 0; 

URmin = [UR0,min,UR1,min,⋯,URI− 1,min]
T; 

URmax = [UR0,max,UR1,max,⋯,URI− 1,max]
T ; 

UDmin = [UD1,min,UD2,min,⋯,UDI,min]
T ; 

UDmax = [UD1,max,UD2,max,⋯,UDI,max]
T. 

2.2.4. Optimal control problem 
Given the train traffic dynamics, by considering the objective func

tion and system constraints, the train regulation problem can be 
formulated as the following optimal control problem: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑jf

k=j0
{p1xT

k+1xk+1 + p2(xk+1 − xk)
T
(xk+1 − xk) + p3urT

k urk

+p3udT
k udk}

s.t. tk+1 = Λtk + T0,k + R + urk + ωrk + D + udk + ωdk

xk+1 = tk+1 − Tk+1

Ψmin⩽tk+1 − D − udk − ωdk − tk

Dmin⩽D + udk + ωdk

Rmin⩽R + urk + ωrk

URmin⩽urk⩽URmax

UDmin⩽udk⩽UDmax

for k ∈ {j0,…, jf }.

(16)  

where, j0 is the initial state number; jf is the terminal state number. 
Similarly, the traditional train regulation model in the down direction 
can be built in the same way with i ∈ {I + 1, I + 2,…,2I}. 

Fig. 2. The illustration of the transfer from stage k to stage k + 1.  
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2.3. Train regulation model with minimizing overlapping time 

2.3.1. Overlapping time between accelerating phases 
In real-world operation, an extreme high substation power occurs if 

numerous adjacent trains are accelerating simultaneously (Chen et al., 
2005). Considering the up and down directions, the adjacent trains 
mean trains departing from adjacent stations in the same direction and 
trains departing from the same station in the opposite direction. In this 
paper, the overlapping time between accelerating phases is taken as an 
indirect evaluation of substation peak power. In previous studies, the 
overlapping time between accelerating and braking phases is maximized 
to overlap the train accelerating and braking phases (Ning, Zhou, Long, 
& Tao, 2018; Yang, Li, Gao, Wang, & Tang, 2013). In this paper, the 
overlapping time between accelerating phases is minimized to avoid 
overlapping of accelerating phases. As shown in Fig. 3, when trains 
accelerate at the same time, the accelerating phases of trains will 
overlap. The simultaneous accelerating of trains can be suppressed by 
minimizing the overlapping time between accelerating phases, thus to 
reduce substation peak power. Based on the calculation of the over
lapping time between accelerating and braking phases (Ramos, Pena, & 
Fernandez, 2007), the model to calculate the overlapping time between 
accelerating phases is built in this section. 

Let Ai be the train accelerating duration from station i to station i +
1, then tji +Ai is defined as the end of the accelerating phase of train i 
after leaving station j. The overlapping time between train j leaving 
station i and train j − 1 leaving station i+1 can be divided into six con
ditions as shown in Table 2. For example, as shown in Fig. 3 (a), 
tj
i⩽tj− 1

i+1, t
j− 1
i+1⩽tj

i +Ai and tji + Ai⩽tj− 1
i+1 + Ai+1, then the overlapping time is 

equal to tj
i + Ai − tj− 1

i+1, which corresponds to Case 5. Similarly, the 
overlapping time between train j leaving station i and train 2I − j+1 

leaving station 2I − i+1 (the same station of station i) can also be divided 
into six conditions. In this section, the overlapping time between train j 
leaving station i and train j − 1 leaving station i+1 is taken as an example 
to explain the calculation of overlapping time. 

2.3.2. Computation of overlapping time between accelerating phases 
In order to distinguish these six conditions, four binary variables 

(ηj
i,1, η

j
i,2, η

j
i,3 and ηj

i,4) are introduced, which are defined as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

tj
i⩽tj− 1

i+1 ⇔ ηj
i,1 = 1

tj
i⩽tj− 1

i+1 + Ai+1 ⇔ ηj
i,2 = 1

tj
i + Ai⩽tj− 1

i+1 ⇔ ηj
i,3 = 1

tj
i + Ai⩽tj− 1

i+1 + Ai+1 ⇔ ηj
i,4 = 1

(17)  

Then, the relationship between the beginning and the end of acceler
ating phases can be expressed by these binary variables, as shown in 
Table 2. For example, when tj

i⩽tj
i + Ai⩽tj− 1

i+1⩽tj− 1
i+1 + Ai+1, [η1,η2,η3,η4] =

[1,1,1,1], and the overlap time is equal to zero corresponding to Case 1. 
In addition, based on the Transformation Property 1 in Appendix A, the 
implication of binary variables 17 can be modelled by the following 
linear constraints: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tj
i − tj− 1

i+1⩽M̃(1 − ηj
i,1)

tj
i − tj− 1

i+1⩾ε + (m̃ − ε)ηj
i,1

tj
i − tj− 1

i+1 − Ai+1⩽M̃(1 − ηj
i,2)

tj
i − tj− 1

i+1 − Ai+1⩾ε + (m̃ − ε)ηj
i,2

tj
i + Ai − tj− 1

i+1⩽M̃(1 − ηj
i,3)

tj
i + Ai − tj− 1

i+1⩾ε + (m̃ − ε)ηj
i,3

tj
i + Ai − tj− 1

i+1 − Ai+1⩽M̃(1 − ηj
i,4)

tj
i + Ai − tj− 1

i+1 − Ai+1⩾ε + (m̃ − ε)ηj
i,4

(18)  

where, ε is a small positive number to transform a strict inequality into 
an inequality. 

In particular, there is no concurrence when a train begins the 
accelerating phase after the end of the accelerating phase of another 
train (Case 1: tji +Ai⩽tj− 1

i+1 or Case 2: tj− 1
i+1 + Ai+1 < tji), otherwise there is 

concurrence. To describe this condition, a binary variable δj
i,1 is intro

duced: 

(tj
i⩽tj− 1

i+1+Ai+1 ∧ tj
i +Ai > tj− 1

i+1)⇔ (ηj
i,2 = 1 ∧ ηj

i,3 = 0)⇔ (δj
i,1 = 1) (19)  

where, δj
i,1 = 1 means there is concurrence, δj

i,1 = 0 means there is no 

concurrence. According to the relationship between ηj
i,2, η

j
i,3 and δj

i,1 in 

the Eq. 19, δj
i,1 can be described as: 

δj
i,1 = ηj

i,2(1 − ηj
i,3) (20)  

Fig. 3. The illustration of the overlapping time between accelerating phases.  

Table 2 
Six conditions of the overlapping time.  

Case Condition Overlapping time [ηj
i,1,η

j
i,2,η

j
i,3,η

j
i,4 ]

1 tji⩽tji + Ai⩽tj− 1
i+1⩽tj− 1

i+1 + Ai+1 0 [1,1,1,1]

2 tj− 1
i+1⩽tj− 1

i+1 + Ai+1 < tji⩽tji + Ai 0 [0,0,0,0]

3 tj− 1
i+1 < tji⩽tji + Ai⩽tj− 1

i+1 + Ai+1 Ai [0,1,0,1]

4 tji⩽tj− 1
i+1⩽tj− 1

i+1 + Ai+1 < tji + Ai Ai+1 [1,1,0,0]

5 tji⩽tj− 1
i+1 < tji + Ai⩽tj− 1

i+1 + Ai+1 tji + Ai − tj− 1
i+1 

[1,1,0,1]

6 tj− 1
i+1 < tji⩽tj− 1

i+1 + Ai+1 < tji + Ai tj− 1
i+1 + Ai+1 − tji [0,1,0,0]
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In addition, based on the Transformation Property 2 in Appendix A, the 
implication of binary variables δj

i,1 can be modelled by the following 
linear constraints: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δj
i,1⩾ηj

i,2 − ηj
i,3

δj
i,1⩽ηj

i,2

δj
i,1⩽1 − ηj

i,3

(21)  

Then, the overlapping time oj
i can be described as: 

⎧
⎨

⎩

0⩽oj
i

M̃(δj
i,1 − 1) + [min(tj

i + Ai, tj− 1
i+1 + Ai+1) − max(tj

i, t
j− 1
i+1)]⩽oj

i

(22)  

Considering minimizing the overlapping time, when δj
i,1 = 1, the second 

part of the above equation acts as the only effectual constraint and the 
value of overlapping time is depended on 
[min(tj

i +Ai, tj− 1
i+1 +Ai+1) − max(tji, t

j− 1
i+1)] corresponding to Case 3 to 6, 

where max(tj
i, t

j− 1
i+1) represents the beginning of the concurrence and 

min(tj
i +Ai, tj− 1

i+1 +Ai+1) represents the end of the concurrence. On the 
other hand, when δj

i,1 = 0, the left side of the second part of the above 

equation ( − M + [min(tji + Ai,tj− 1
i+1 + Ai+1) − max(tji,t

j− 1
i+1)]) is negative, and 

the first part acts as the only effectual constraint, then oj
i = 0 corre

sponding to Case 1 and 2. 
In addition, to define max(tj

i, t
j− 1
i+1) and min(tj

i + Ai, tj− 1
i+1 + Ai+1), the 

following binary variables (δj
i,2, δ

j
i,3, δ

j
i,4 and δj

i,5) are introduced: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δj
i,2 = (1 − ηj

i,1)η
j
i,4

δj
i,3 = ηj

i,1(1 − ηj
i,4)

δj
i,4 = ηj

i,1η
j
i,4

δj
i,5 = (1 − ηj

i,1)(1 − ηj
i,4)

(23)  

Similarly, binary variables δj
i,2, δ

j
i,3, δ

j
i,4 and δj

i,5 can be modelled as Eq. 21 
based on the Transformation Property 2 in Appendix A. Binary variables 
δj

i,2, δ
j
i,3, δ

j
i,4 and δj

i,5 correspond to Case 3, 4, 5 and 6 respectively. For 

example, when δj
i,2 = 1,min(tji +Ai, tj− 1

i+1 +Ai+1) = tji +Ai and max(tj
i, t

j− 1
i+1)

= tji, then [min(tji + Ai,tj− 1
i+1 + Ai+1) − max(tji,t

j− 1
i+1)] = tji + Ai − tj

i = Ai, thus 
δj

i,2 = 1 means that the calculation of overlapping time is based on Case 
3. 

Based on the binary variables δj
i,1, δj

i,2, δj
i,3, δj

i,4 and δj
i,5, the calculation 

of overlapping time Eq. 22 can be rewritten as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0⩽oj
i

M̃(δj
i,1 + δj

i,2 − 2) + Ai⩽oj
i

M̃(δj
i,1 + δj

i,3 − 2) + Ai+1⩽oj
i

M̃(δj
i,1 + δj

i,4 − 2) + (tj
i + Ai − tj− 1

i+1)⩽oj
i

M̃(δj
i,1 + δj

i,5 − 2) + (tj− 1
i+1 + Ai+1 − tj

i)⩽oj
i

(24)  

Considering minimizing the overlapping time, the value of oj
i is depen

ded on the value of the binary variables δj
i,1, δ

j
i,2, δ

j
i,3, δ

j
i,4 and δj

i,5. For 

example, when δj
i,1 = 0, the second to fifth constraints of the above 

equation do not work, then oj
i = 0; when δj

i,1 = δj
i,2 = 1, then δj

i,3 =

δj
i,4 = δj

i,5 = 0, the second part of the above equation is the only effectual 

constraint, then oj
i = Ai. 

Besides, on the basis of the train traffic dynamics model, Eq. 24 can 

be rewritten with the vector and matrix form as: 

F1δk +F2tk +F3ok +F4A⩽F5 (25)  

where, δk = [δk− 1
1 , δk− 2

2 ,…, δk− I
I ]

T
,δj

i = [δj
i,1,δ

j
i,2,δ

j
i,3,δ

j
i,4,δ

j
i,5]; 

ok = [ok− 1
1 , ok− 2

2 ,…, ok− I
I ]

T; A = [A1,A2,…,AI]
T ; the definitions of F1,

F2, F3, F4 and F5 are given in Appendix B. Meanwhile, the constraints of 
binary variables ηj

i and δj
i can also be rewritten with the vector and 

matrix form as: 

E1tk +E2ηk +E3A⩽E4 (26)  

G1δk +G2ηk⩽G3 (27)  

where, ηk = [ηk− 1
1 , ηk− 2

2 ,…, ηk− I
I ]

T
,ηj

i = [ηj
i,1,η

j
i,2,η

j
i,3,η

j
i,4]; the definitions of 

E1,E2,E3,E4,G1,G2 and G3 are given in Appendix B. 
The above work finishes the computation of the overlapping time in 

the same direction. Similarly, the overlapping time in the opposite di
rection can be expressed in the same way. For the overlapping time in 
the opposite direction, the calculation is based on the relationship be

tween tj
i, t

j
i +Ai, t2I− j+1

2I− i+1 and t2I− j+1
2I− i+1 + A2I− i+1. Binary variables δk =

[δk− 1
1 , δk− 2

2 ,…, δk− I
I ]

T 
and ηk = [ηk− 1

1 , ηk− 2
2 ,…, ηk− I

I ]
T are introduced to 

describe the overlapping time in the opposite direction ok: 

F1δk +F2tk +F3ok +F4A+F5tk +F6A⩽F7 (28)  

and, related binary variables should meet the following constraints: 

E1tk +E2ηk +E3A+E4tk +E5A⩽E6 (29)  

G1δk +G2ηk⩽G3 (30)  

where, δj
i = [δj

i,1, δ
j
i,2, δ

j
i,3, δ

j
i,4, δ

j
i,5]

T
; ηj

i = [ηj
i,1, ηj

i,2, ηj
i,3, ηj

i,4]
T
; 

ok = [ok− 1
1 , ok− 2

2 ,…, ok− I
I ]

T; tk = [tk− I− 1
I+1 , tk− I− 2

I+2 ,…, tk− 2I
2I ]

T, is the de
parture time in the down direction; A = [AI+1,AI+2,…,A2I]

T , is the 
accelerating duration in the down direction; the derivation of Eq. 28–30 
is given in Appendix B. 

In addition, the calculation of overlapping time can be described as 
simpler forms: 
{

C1tk + C2ok + C3δk + C4ηk⩽C5
C1tk + C2ok + C3δk + C4ηk⩽C5

(31)  

where, the definitions of matrices in the above Eq. 31 are given in Ap
pendix B. 

2.3.3. Joint optimal control problem with minimizing overlapping time 
The objectives of the joint optimal control problem are to minimize 

the timetable deviation, headway deviation, magnitude of the control 
actions (Zhang et al., 2019) and overlapping time between accelerating 
phases, which can be described as: 

Jk = p1xT
k+1xk+1 + p2(xk+1 − xk)

T
(xk+1 − xk) + p3urT

k urk

+p3udT
k udk + p4oT

k+1ok+1 + p4oT
k+1ok+1

(32)  

where, p4 is the weight coefficient. 
In addition, given the new objective function 32, by considering the 

traditional train regulation model 16, the joint optimal control problem 
with minimizing overlapping time can be formulated as the following 
joint optimal control problem: 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑jf

j0
{p1xT

k+1xk+1 + p2(xk+1 − xk)
T
(xk+1 − xk) + p3urT

k urk

+p3udT
k udk + p4oT

k+1ok+1 + p4oT
k+1ok+1}

s.t. tk+1 = Λtk + T0,k + R + urk + ωrk + D + udk + ωdk

xk+1 = tk+1 − Tk+1

C1tk+1 + C2ok+1 + C3δk+1 + C4ηk+1⩽C5
C1tk+1 + C2ok+1 + C3δk+1 + C4ηk+1⩽C5
System constraints 15

for k ∈ {j0,…, jf }.

(33)  

2.4. Train regulation model with minimizing overlapping quantity 

2.4.1. Overlapping quantity between accelerating phases 
In this section, the overlapping quantity is proposed to replace the 

overlapping time as the indirect evaluation of substation peak power. 
The overlapping quantity indicates the number of valid overlapping. As 
shown in Fig. 4, when the accelerating peak power of train j is close to 
the accelerating peak power of train 2I − j − 1, there is a valid over
lapping between these two trains. On the other hand, when the interval 
between two accelerating peak power is relatively large, the overlapping 
is invalid and the overlapping quantity will not increase. In this paper, 
the midpoint of the accelerating phase is regarded as the accelerating 
peak power point. For example, tj

i +Ai/2 is the accelerating peak power 
point of train j running from station i to station i + 1. As shown in Fig. 4, 
trains are accelerating simultaneously in the valid overlapping situation, 
which will cause substation peak power. Thus, the overlapping quantity 
is minimized to avoid the substation peak power in this section. 

Let τ be a measure of the validity of overlapping, when the interval 
between accelerating phases is larger than τ, the overlapping is invalid, 
otherwise, the overlapping is valid. The overlapping between train j 
leaving station i and train j − 1 leaving station i+1 can be divided into 
two conditions as shown in Table 3. 

2.4.2. Computation of overlapping quantity between accelerating phases 
In order to distinguish these two conditions, as shown in Table 3, a 

binary variable αj
i is introduced: 

αj
i = 1⇔

⃒
⃒tj

i +Ai
/
2 − tj− 1

i+1 − Ai+1
/
2
⃒
⃒⩽τ (34)  

where, 
⃒
⃒
⃒tji +Ai/2 − tj− 1

i+1 − Ai+1/2
⃒
⃒
⃒⩽τ means that tji +Ai/2 − tj− 1

i+1 − Ai+1/2⩽τ 

and tj
i + Ai/2 − tj− 1

i+1 − Ai+1/2⩾ − τ. Then, two binary variables βj
i,1 and βj

i,2 

are introduced: 

βj
i,1 = 1⇔ tj

i +Ai
/
2 − tj− 1

i+1 − Ai+1
/
2⩽τ (35)  

βj
i,2 = 1⇔ tj

i +Ai
/
2 − tj− 1

i+1 − Ai+1
/
2⩾ − τ (36)  

Based on the Transformation Property 2 in Appendix A, the implication 
of binary variables βj

i,1 and βj
i,2 can be modelled by the following linear 

constraints: 
⎧
⎨

⎩

tj
i + Ai

/
2 − tj− 1

i+1 − Ai+1

/
2 − τ⩽M̃(1 − βj

i,1)

tj
i + Ai

/
2 − tj− 1

i+1 − Ai+1

/
2 − τ⩾ − M̃βj

i,1

(37)  

⎧
⎨

⎩

− tj
i − Ai

/
2+ tj− 1

i+1 + Ai+1

/
2 − τ⩽M̃(1 − βj

i,2)

− tj
i − Ai

/
2+ tj− 1

i+1 + Ai+1

/
2 − τ⩾ − M̃βj

i,2

(38)  

In addition, the binary variable αj
i can be expressed as: 

αj
i = βj

i,1β
j
i,2 (39)  

which means only when βj
i,1 = 1 and βj

i,2 = 1, αj
i = 1. The relationship 

between αj
i, β

j
i,1 and βj

i,2 can be modelled by the following linear con
strains: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αj
i⩽βj

i,1

αj
i⩽βj

i,2

αj
i⩾βj

i,1 + βj
i,2 − 1

(40)  

When the interval between accelerating phases of train j leaving station i 
and train j − 1 leaving station i+1 is less than τ, αj

i = 1, which means 
there is valid overlapping. Then, the overlapping quantity can be 
expressed as 

∑
αj

i, which is minimized to suppress valid overlapping. 
In addition, the calculation of overlapping quantity in the same and 

opposite direction can be described as the vector and matrix form as: 
{

B1tk + B2αk + B3βk⩽B4
B1tk + B2αk + B3βk⩽B4

(41)  

where, αk = [αk− 1
1 , αk− 2

2 ,…, αk− I
I ]

T; βk = [βk− 1
1 ; βk− 2

2 ;…; βk− I
I ], βj

i =

Fig. 4. The illustration of the invalid and valid overlapping between acceler
ating phases. 

Table 3 
Two conditions of the validity of overlapping.  

Case Condition Overlapping αj
i 

1 
⃒
⃒
⃒tji + Ai/2 − tj− 1

i+1 − Ai+1/2
⃒
⃒
⃒⩽τ Valid 1 

2 
⃒
⃒
⃒tji + Ai/2 − tj− 1

i+1 − Ai+1/2
⃒
⃒
⃒ > τ Invalid 0  
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[βj
i,1, β

j
i,2]

T
; αk = [αk− 1

1 ,αk− 2
2 ,…, αk− I

I ]
T; βk = [βk− 1

1 ; βk− 2
2 ;…; βk− I

I ], βj
i =

[βj
i,1, β

j
i,2]

T
; the definitions of other matrices in the above Eq. 41 are given 

in Appendix B. 

2.4.3. Joint optimal control problem with minimizing overlapping quantity 
The objectives of the joint optimal control problem is to minimize the 

timetable deviation, headway deviation, magnitude of the control ac
tions (Zhang et al., 2019) and overlapping quantity, which can be 
described as: 

Jk = p1xT
k+1xk+1 + p2(xk+1 − xk)

T
(xk+1 − xk) + p3urT

k urk

+p3udT
k udk + P5αk+1 + P5αk+1

(42)  

where, P5 = [p5, p5,…, p5]1×I; P5 = [p5, p5,…, p5]1×I; p5 is the weight co
efficient. 

In addition, given the new objective function 42, by considering the 
traditional train regulation model 16, the joint optimal control problem 
with minimizing overlapping quantity can be formulated as the 
following joint optimal control problem: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑jf

j0
{p1xT

k+1xk+1 + p2(xk+1 − xk)
T
(xk+1 − xk) + p3urT

k urk

+p3udT
k udk + P5αk+1 + P5αk+1}

s.t. tk+1 = Λtk + T0,k + R + urk + ωrk + D + udk + ωdk

xk+1 = tk+1 − Tk+1

B1tk + B2αk + B3βk⩽B4
B1tk + B2αk + B3βk⩽B4
System constraints 15

for k ∈ {j0,…, jf }.

(43)  

3. Algorithm description 

3.1. Model predictive control algorithm 

In this paper, MPC algorithm is adopted to solve the proposed 
optimal control problems (16), (33) and (43). First, since several pa
rameters in the model, like ωrk and ωdk, are time-dynamics during the 
regulation process, the MPC algorithm as an online optimization tech
nique can handle this character. Second, the MPC algorithm can effec
tively solve large-scale optimization problems, such as the proposed 
nonlinear high-dimensional problems. 

MPC is a control algorithm that implements repeatedly optimal 
control in a rolling horizon manner. At each sample step k, an optimal 
control problem is solved based on the measured current system states at 
step k over a L step prediction horizon (k + 1,…, k + L), and a set of 
optimal control sequence can be obtained. Then, only the first control 
action of the optimal control sequence is applied to the system consid
ering the dynamics of the system parameters and disturbances. At the 
next step k + 1, the optimal control problem is solved again based on the 
newly updated system states at step k + 1, and also only the first control 
action is applied to the system, and repeat. Specifically, the MPC algo
rithm for the proposed problem can be described as the following three 
components. 

Prediction model. The prediction model is used to predict the influ
ence of control actions on the dynamic system. For the proposed train 
regulation problem, the train traffic dynamics model 5 is used to predict 
the timetable and headway deviations based on the system states at each 
step. 

Optimization problem. At each step, a set of optimal control sequence 
is obtained by solving the optimization problem over a pre-given pre
diction horizon. Based on the joint optimal control model with mini
mizing overlapping time (33), at step k, the optimization problem with 

horizon L can be described as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑L− 1

i=0
{p1xT

k+i+1xk+i+1 + p2[xk+i+1 − xk+i]
T
[xk+i+1 − xk+i]

+p3urT
k+iurk+i + p3udT

k+iudk+i + p4oT
k+i+1ok+i+1

+p4o
T
k+i+1ok+i+1}

s.t. tk+i+1 = Λtk+i + T0,k+i + R + urk+i + ωrk+i + D

+udk+i + ωdk+i

xk+i+1 = tk+i+1 − Tk+i+1

Ψmin⩽tk+i+1 − D − udk+i − ωdk+i − tk+i

Dmin⩽D + udk+i + ωdk+i

Rmin⩽R + urk+i + ωrk+i

URmin⩽urk+i⩽URmax

UDmin⩽udk+i⩽UDmax

C1tk+i+1 + C2ok+i+1 + C3δk+i+1 + C4ηk+i+1⩽C5
C1tk+i+1 + C2ok+i+1 + C3δk+i+1 + C4ηk+i+1⩽C5
for i ∈ {0,…, L − 1}.

(44)  

The above optimization Problem 44 is a mixed integer quadratic pro
gramming (MIQP) problem, which can be solved by several effective 
solvers. Similarly, the joint optimal control problem with minimizing 
overlapping quantity (43) can be processed as a MIQP problem and the 
traditional optimal model (16) can be processed as a quadratic pro
gramming (QP) problem. 

Rolling horizon. When the optimal control sequence is obtained by 
solving the optimization problem, the first control action is implemented 
to the system. At the next step, the input of the prediction model is the 
newly updated system states, the whole prediction horizon is shifted one 
step forward, and the optimization problem with newly updated pa
rameters is solved again. 

In addition, the MPC algorithm for the proposed train regulation 
problem can be summarized as follows. By applying the MPC algorithm, 
the optimal control problem is formulated as a set of MIQP/QP problems 
to obtain the control sequence. By choosing a proper prediction horizon 
length, the formulated MIQP problems can be solved effectively meeting 
the real-time computation requirement. Especially, in Step 2, the de
parture times of trains in the opposite direction are obtained to formu
late the optimization problem. 

Algorithm 1. MPC algorithm   
Set k = j0 and initialize the system states 
repeat 

Step 1: According to the system states and the prediction model, calculate the 
predicted states needed for the optimization problem in the prediction horizon from 
k+1 to k + L. 
Step 2: Formulate the optimization problem. 
Step 3: Solve the formulated optimization problem to obtain the optimal control 
sequence. 
Step 4: Apply the first control action of the optimal control sequence, set k = k + 1, 
and update the system states. 

until k⩾jf   

3.2. The sizes of the optimization problems 

The sizes of the optimization problems in MPC algorithm of tradi
tional train regulation model (TR-T) (16), train regulation model with 
minimizing overlapping time (TR-OT) (33) and train regulation model 
with minimizing overlapping quantity (TR-OQ) (43) are shown in 
Table 4. In addition, the sizes of optimization problems are estimated for 
I = 13 (corresponding to 26 stations), and L = 2. As shown in Table 4, 
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the sizes of the optimization problems TR-OT and TR-OQ are larger than 
the size of the optimization problem TR-T. By comparing the optimi
zation problems TR-OT and TR-OQ, we can observe that the size of the 
optimization problem TR-OQ is smaller, which means that using the 
overlapping quantity as the indirect evaluation of substation peak power 
can reduce the size of the train regulation problem considering the 
substation peak power reduction. 

4. Numerical examples 

4.1. Numerical example conditions 

In order to illustrate the effectiveness robustness of the proposed 
models and algorithms, one of the Guangzhou metro lines is taken as an 
example to implement the numerical examples. This metro line includes 
13 stations (i.e., 2I = 26) and 7 substations, as shown in Fig. 5. Both the 
up and down direction operation of the metro line are considered in the 
numerical examples. Since disturbances occur frequently during peak 
hours, the morning peak hours is chosen as the train regulation testing 
period. During the morning peak hours, the nominal headway H is 150s, 
the minimum departure-arrival interval Imin is 20s, nominal timetable 
parameters are shown in Table 5. The constraints of the magnitude of the 
control actions are respectively set as URi,min = − 30s, URi,max = 30s, 
UDi,min = − 20s, UDi,mmax = 20s, ∀i ∈ {1, 2,…, 2I}. In the numerical 
examples, 7:00 am is set as 0s, which is set as the initial stage (k = 1). 
The considered time step horizon (jf − js) is 19, the departure time of the 
first train at station 1 in the up direction is 10s, and the departure time of 
the first train at station 14 in the down direction is 0s, then the departure 
times of trains at station 1 is [10,160,310,…,2860]s at station 17 is [0,
150, 300, …, 2850]s. At stage 1, there is no deviation between the 
nominal timetable and the actual timetable. Case studies are tested 
under the MATLAB environment on a personal computer with Intel Core 
i5 2.30 GHz CPU and 8 GB RAM, and the MIQP and QP problems are 
solved by using CPLEX Solver 12.6. Specially, the computation time at 
each stage is limited to be 60s. 

To validate the effectiveness of the proposed real-time train regula
tion strategies considering minimizing the substation peak power (TR- 
OT and TR-OQ), they are compared with the traditional train regulation 
strategy (TR-T) and safe strategy without regulation (TR-S). More details 
about these four strategies are as follows: 

Strategy TR-S. Safe strategy without regulation, the train regulation 
strategies are obtained only considering the system constraints (15). In 
the strategy TR-S, control actions are only adopted when the timetable is 
infeasible. 

Strategy TR-T. Traditional regulation strategy, the train regulation 
strategies are obtained by solving the traditional train regulation opti
mization problem (16) in the MPC algorithm. In the strategy TR-T, 
control actions are adopted to suppress disturbances by minimizing 
timetable deviation and headway deviation. 

Strategy TR-OT. Regulation strategy considering minimizing the 
overlapping time, the train regulation strategies are obtained by solving 
the train regulation optimization problem considering minimizing the 
overlapping time (33) in the MPC algorithm. In the strategy TR-OT, the 
overlapping time is minimized to suppress the substation peak power. 

Strategy TR-OQ. Regulation strategy considering minimizing the 
overlapping quantity, the train regulation strategies are obtained by 
solving the train regulation optimization problem considering mini
mizing the overlapping quantity (43) in the MPC algorithm. In the 
strategy TR-OQ, the overlapping quantity is minimized to suppress the 
substation peak power. 

4.2. Comparison of different control strategies under pre-set disturbances 

In this section, the runtime and dwelltime disturbances are pre-set 
artificially, which are shown in Table 6 and Table 7 respectively. 
Without loss of generality, the weight coefficients of timetable devia
tion, headway deviation and control actions are set to be the same (i.e. 
p1 = p2 = p3 = 1). Meanwhile, in this section, the weight coefficient of 
overlapping time p4 in the strategy TR-OT is set to be 1 (i.e. p4 = 1), the 
weight coefficient of overlapping quantity p5 in the strategy TR-OQ is set 
to be 1000 (i.e. p5 = 1000). The prediction step horizon L is chosen as 2. 
The timetable deviations, headway deviations, timetables and train 
delays of four strategies are shown in Fig. 6, Fig. 7, Fig. 8 and Fig. 9 
respectively. The performances of the four strategies are shown in 

Table 8. Specially, the total timetable deviation is defined as [
∑

i,j(x
j
i)

2
]

1
2
, 

and the total headway deviation is defined as [
∑

i,j(x
j
i − xj− 1

i )
2
]

1
2
. 

We compare the proposed strategies with other regulation strategies 
in the following aspects. The first aspect regards the timetable deviation. 

Table 4 
The sizes of the optimization problems.  

Items Size   I = 13, L = 2   
TR-T TR-OT TR-OQ TR-T TR-OT TR-OQ 

Constraints 9IL 65IL 29IL 234 1690 754 
Continuous variables 5IL 5IL 5IL 130 130 130 
Binary variables 0 18IL 6IL 0 468 156  

Fig. 5. The map of one of the Guangzhou metro line.  

Table 5 
Nominal timetable parameters during morning peak hours.  

Station 
index 

Nominal 
runtime 
[s] 

Minimum 
runtime 
[s] 

Accelerating 
duration [s] 

Nominal 
dwelltime 
[s] 

Minimum 
dwelltime 
[s] 

1/26 0/125 0/110 27/0 60/60 45/45 
2/25 129/82 110/68 22/28 45/45 30/30 
3/24 86/115 75/102 25/24 45/45 30/30 
4/23 116/80 103/68 20/22 45/45 30/30 
5/22 81/108 71/94 24/20 45/45 30/30 
6/21 111/110 98/100 24/20 50/50 30/30 
7/20 102/120 91/102 27/28 44/44 30/30 
8/19 124/99 115/82 22/25 46/46 30/30 
9/18 99/75 93/66 20/25 47/45 30/30 
10/17 74/80 65/70 20/20 55/55 45/45 
11/16 75/90 66/85 23/25 50/50 30/30 
12/15 96/129 85/110 28/20 48/45 30/30 
13/14 131/0 120/0 0/28 60/60 45/45  
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Table 6 
The pre-set runtime disturbances wr.  

Disturbance index 1 2 3 4 5 6 7 8 9 10 11 12 
Stage index 1 1 3 3 11 11 15 15 4 6 12 15 
Station index 3 8 3 12 4 10 2 8 16 22 24 15 
Intensity [s] 30 30 25 25 30 25 30 20 20 20 30 30  

Table 7 
The pre-set dwelltime disturbances wd.  

Disturbance index 1 2 3 4 5 6 7 8 9 10 11 12 
Stage index 2 2 5 5 13 13 16 16 6 9 14 15 
Station index 2 9 9 14 24 8 17 14 14 21 24 18 
Intensity [s] 30 25 20 20 20 30 20 30 25 30 30 30  

Fig. 6. The timetable deviations of four strategies under the pre-set disturbances.  
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From Fig. 6, we can observe that the timetable deviations are signifi
cantly reduced in the strategies TR-T, TR-OT and TR-OQ, which in
dicates the stability of the URT line system under the optimal strategies. 
For the strategy TR-T, the timetable deviation at station 3 is reduced 
from 30s at stage 2 to 0s at stage 8, and trains are operated according to 
the nominal timetable as shown in Fig. 8 (b). For the strategies TR-OT 
and TR-OQ, the timetable deviations fluctuate in a small range and 
have no tendency to propagate as shown in Fig. 8 (c) and (d). However, 
the timetable deviations in the strategy TR-S are propagated to the latter 
stations without reduction, as shown in Fig. 8 (a), which will lead to 
instability of successive operation. In more details, as shown in Table 8, 
compared to the strategy TR-S, the total timetable deviations of the 
strategies TR-T, TR-OT and TR-OQ are reduced by 68.20%, 57.80% and 
64.07% respectively. Meanwhile, the max timetable deviation is 
reduced from 100s to 34s, 39s and 40s respectively. Therefore, under the 
pre-set disturbances in this section, the strategy TR-T achieves the best 
performance in reducing the timetable deviation, and the strategy TR- 

OT and TR-OQ both achieve good performance in reducing the time
table deviation. 

The second part is the headway deviation. From Fig. 7, we can 
observe that the headway deviations in the strategy fluctuate more 
frequently in a larger range in comparison to the strategies TR-T, TR-OT 
and TR-OQ. In more detail, as shown in Table 8, compared to the 
strategy TR-S, the total headway deviations of the strategy TR-T, TR-OT 
and TR-OQ are reduced by 73.84%, 66.86% and 71.84% respectively. 
Meanwhile, the max headway deviation is reduced from 100s to 31s, 32s 
and 37s respectively. Therefore, under the pre-set disturbances in this 
section, the strategy TR-T achieves the best performance in reducing the 
headway deviation, and the strategy TR-OT and TR-OQ both achieve 
good performance in reducing the headway deviation. The timetables 
for train 2 to 7 are shown in Fig. 8 and the delays for train 2 to 4 are 
shown in Fig. 9. For the strategy TR-S, the initial train delays are 
propagated to the latter stations and the train delays will increase when 
new disturbances occurring, as shown in Fig. 8 (a) and Fig. 9 (a). The 

Fig. 7. The headway deviations of four strategies under the pre-set disturbances.  
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incremental train delays will influence the nominal operation of suc
cessive and destroy the stability of the URT metro line system. On the 
other hand, the train delays are significantly reduced in the strategies 
TR-T, TR-OT and TR-OQ by applying the optimal train regulation stra
tegies, as shown in Fig. 9 (b), (c) and (d) respectively, which indicates 
the stability of the URT line system under the optimal strategies. 

The third point concerns the substation peak power. In this paper, 
the substation power over 4 MW is regarded as the peak power, it is due 
to that the maximum train traction power is around 4 MW. When the 
substation power exceeds 4 MW, it means there are multiple trains 
accelerating at the same time. As shown in Table 8, for the strategies TR- 
OT and TR-OQ, the total overlapping time is reduced from 195s to 174s 
and 168s compared to the strategy TR-T respectively, and the total 
overlapping quantity is reduced from 115 to 91 and 70 respectively. In 
addition, for the strategies TR-OT and TR-OQ, the duration of substation 
power over 4 MW is reduced from 753s to 745s and 701s compared to 
the strategy TR-T respectively. Under the pre-set disturbances in this 
section, by applying the strategies TR-OT and TR-OQ, the duration of 
substation peak power can be reduced in comparison to that of the 
strategy TR-T with the cost of weakening the effect of reducing the 
timetable and headway deviations. 

The fourth aspect concerns real-time performance. As shown in 
Table 8, the average computation time of the strategies TR-T and TR-OQ 
are both less than 1s. The average computation time of the strategy TR- 
OT is 22.11s, which is less than the minimum dwelltime (i.e. 30s). 

However, in the strategy TR-OT, the computation time of solving the 
related optimal control problem is larger than 30s at some stages. Thus, 
besides the strategy TR-OT with the weight coefficient p4 = 1, the above 
strategies can meet the real-time requirement. 

4.3. Comparison of different control strategies under Monte-Carlo scheme 

In this section, the train regulation strategies are evaluated in a 
Monte-Carlo scheme with respect to 30 different disturbance scenarios, 
aiming to better evaluate the effectiveness and robustness of the pro
posed train regulation methods. This number of scenarios, 30, is suffi
cient to obtain results with a level of confidence of 90% in train 
regulation problems (Ghasempour & Heydecker, 2020). Each scenario is 
formulated by sampling both runtime disturbances and dwelltime dis
turbances from Weibull distributions (Ghasempour & Heydecker, 2020; 
Quaglietta, Corman, & Goverde, 2013). We adopt shape parameter 1.5 
and scale parameter 8s to produce runtime disturbances, as shown in 
Fig. 10 (a). Meanwhile, we adopt shape parameter 1.8 and scale 
parameter 4s to produce dwelltime disturbances. Especially, the scale 
parameter for dwelltime disturbances at interchange stations (Station 3 
and 5) is set to be 6s, as shown in Fig. 10 (b). As shown in Fig. 10 (b), the 
probability of big dwelltime disturbances happening at interchange 
stations (the red line) is larger than it at other stations (the blue line). For 
this experiment, we adopt the same objective weight coefficients as in 
the previous section (i.e. p1 = p2 = p3 = p4 = 1 and p5 = 1000), and the 

Fig. 8. The timetables for train 2 to 7 of four strategies under the pre-set disturbances.  
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prediction step horizon L as 2. Since the train regulation strategies are 
evaluated in the Monte-Carlo scheme, the results are presented as 
average over the 30 disturbance scenarios considered. The performances 
(average of 30 scenarios) of four strategies are shown in Table 9. 

From Table 9, we can observe that the timetable and headway de
viations are significantly reduced in the strategies TR-T, TR-OT and TR- 
OQ, in comparison to the strategy TR-S. In terms of suppressing dis
turbances, the strategy TR-T achieves the best performances both in 
minimizing the timetable and headway deviations. In the strategy TR-T, 
the total timetable deviation is reduced to the minimum value, 330.89s, 
and the max timetable deviation is reduced to the minimum value, 
41.21s. Meanwhile, the total headway deviation is reduced to the min
imum value, 104.38s, and the max headway deviation is reduced to the 

Fig. 9. The delays for train 2 to 4 of four strategies under the pre-set disturbances.  

Table 8 
The performances of four strategies under the pre-set disturbances.  

Type of strategy TR-S TR-T TR-OT TR-OQ 

Total timetable deviation [s] 372.15 118.36 157.06 133.70 
Max timetable deviation [s] 100 34 39 40 
Total headway deviation [s] 465.40 121.75 154.24 131.09 
Max headway deviation [s] 100 31 32 37 
Total overlapping time [s] 178 195 175 168 
Total overlapping quantity 94 115 91 70 
Duration of substation power over 4 MW 

[s] 
708 753 745 701 

Average computation time [s] / 0.08 22.11 0.22  
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minimum value, 22.57s. In terms of suppressing substation peak power, 
the strategies TR-OT and TR-OQ have better performances in reducing 
the duration of substation power over 4 MW in comparison to the 
strategy TR-T. By comparing the performances of the strategies TR-OT 
and TR-OQ, we can observe that the strategy TR-OT with weight coef
ficient p4 = 1 have better performances in suppressing substation peak 
power in comparison to the strategy TR-OQ with coefficient p5 = 1000, 
with the cost of weakening the effect of reducing the timetable and 
headway deviations. In terms of computation efficiency, the average 
computation times of the strategy TR-T and TR-OQ are both less than 1s, 
which meets the real-time requirements. Due to the complexity of the 
optimization problem solved at each stage, the average computation 
time of the strategy TR-OT reaches a large value, 8.69s. 

In addition, we test cases where all disturbances are known in 
advance under the Monte-Carlo scheme, aiming to evaluate that how 
much is lost to the real-world disturbances. The performances of cases 
where all disturbances are known in advance are shown in Table 10. In 

comparison to cases where all disturbances are unknown in advance, as 
shown in Table 9, it is clear that the total timetable and headway de
viations of cases that all disturbances are known in advance can be 
significantly reduced. For example, the total timetable deviation can be 
reduced from 330.89s to 38.64s by getting disturbance information in 
advance. 

4.4. Comparison of different prediction horizon length L 

In this section, we analyze the impact of the prediction horizon 
length L on the computational complexity and regulation performances. 
The strategies TR-T, TR-OT and TR-OQ with different prediction horizon 
lengths are evaluated under the Monte-Carlo scheme with respect to 30 
different disturbance scenarios. The results of the strategies TR-T, TR-OT 
and TR-OQ are shown in Tables 11–13 respectively. It is clear that with 
the increase of prediction horizon length L from 1 to 5, the average 
computation times of the strategies TR-T, TR-OT and TR-OQ increase. 
Although the computation time quickly increases from L = 2 to L = 3, 
higher values for L do not seem to negatively impact solving times of the 
strategy TR-OT as much. It is due to the pre-set computation time limit at 
each stage. Meanwhile, the sizes of the optimization problems, as shown 
in Table 4, reflect that the prediction horizon length L has a significant 
impact on the computation complexity. On the other hand, the regula
tion performances are influenced by the prediction horizon length L. 
When L increases from 1 to 2, the performances are improved signifi
cantly in all strategies, as shown in Table 11, Table 12 and Table 13, like 
the total timetable deviation of the strategy TR-OT is reduced from 
418.29s to 347.26s. However, when L increases from 2 to 5, the 

Fig. 10. The probability distributions of runtime and dwelltime disturbances.  

Table 9 
The performances (average of 30 scenarios) of the four strategies under the 
Monte-Carlo scheme.  

Type of strategy TR-S TR-T TR-OT TR-OQ 

Total timetable deviation [s] 1132.26 330.89 347.26 341.02 
Max timetable deviation [s] 165.43 41.21 44.26 42.81 
Total headway deviation [s] 291.54 104.38 107.82 106.87 
Max headway deviation [s] 58.50 22.57 23.21 23.21 
Total overlapping time [s] 167.92 191.45 148.67 172.24 
Total overlapping quantity 72.37 86.10 48.57 67.70 
Duration of substation power over 4 

MW [s] 
629.43 1015.33 765.00 894.17 

Average computation time [s] / 0.05 8.69 0.18  

Table 10 
The performances of cases where all disturbances are known in advance under 
the Monte-Carlo scheme.  

Type of strategy TR-T TR-OT TR-OQ 

Total timetable deviation [s] 38.64 80.22 70.81 
Max timetable deviation [s] 6.36 12.25 9.68 
Total headway deviation [s] 17.22 13.95 15.19 
Max headway deviation [s] 3.45 2.82 4.07 
Total overlapping time [s] 197.39 109.63 145.80 
Total overlapping quantity 124.23 25.40 84.27 
Duration of substation power over 4 MW [s] 723.83 628.73 696.73 
Average computation time [s] 0.40 11.85 0.22  

Table 11 
The performances of TR-T strategy with different prediction horizon length L.  

Value of L 1 2 3 4 5 

Total timetable 
deviation [s] 

407.36 330.89 318.35 315.96 315.49 

Max timetable 
deviation [s] 

47.21 41.21 40.25 40.07 40.04 

Total headway 
deviation [s] 

103.31 104.38 104.48 104.48 104.48 

Max headway 
deviation [s] 

22.84 22.57 22.54 22.53 22.53 

Total overlapping time 
[s] 

199.05 191.45 190.54 190.39 190.36 

Total overlapping 
quantity 

93.2 86.10 85.6 85.57 85.53 

Duration of substation 
power over 4 MW [s] 

1032.83 1015.33 1013.13 1014.90 1015.17 

Average computation 
time [s] 

0.02 0.05 0.13 0.22 0.51  
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performances are not improved with the cost of computation time in
crease. Therefore, considering the computational complexity and regu
lation performances, it is reasonable to set the prediction horizon length 
L as 2. 

4.5. Comparison of different objective weight coefficients 

To balance the objectives better, we aim to conduct the sensitivity 
analysis for the weight coefficients p4 and p5. The weight coefficient p4 is 
related to the overlapping time, and p5 is related to the overlapping 
quantity. By only changing weight coefficients p4 or p5, its effects on the 
regulation performances are evaluated. In this section, two groups of 
numerical experiments are set up under the Monte-Carlo scheme. In the 
first group, the weight coefficient p4 is changed with the values of 0, 1, 
10, 100 and 1000, to analyze the effect of the overlapping time on the 
regulation performances. And, in the second group, the weight coeffi
cient p5 is changed with the values of 0, 100, 500, 1000, and 20000, to 
analyze the effect of the overlapping quantity on the regulation per
formances. 

As shown in Table 14, the weight coefficient p4 has a significant 
influence on the duration of substation power over 4 MW. The duration 
of substation power over 4 MW decreases as the value of p4 increases. 
The duration is 765.00s with p4 = 1, and the duration is reduced to 
468.43s when p4 = 1000. However, at the same time, the total timetable 
deviation increases from 347.26s to 572.18s, and the total headway 
deviation increases from 107.82s to 323.63s. Therefore, it is necessary to 
balance the objective of reducing the substation peak power and the 
objectives of reducing the timetable and headway deviations by picking 
a suitable value of p4. Meanwhile, the weight coefficient p5 has the same 
influence on the objectives. As shown in Table 15, when the value of p5 
increases, the duration of substation power over 4 MW decreases, and 
the timetable and headway deviations increase. Specially, when p5 in
creases from 500 to 2000, there is no significant change in the perfor
mances, like the duration of substation power over 4 MW maintains at 
894.17s. It is the limitation of substation peak power reduction that can 
be achieved through the strategy TR-OQ. By comparing the strategies 
TR-OT and TR-OQ with different objective weights, it is clear that the 
strategy TR-OT has more potential for suppressing substation peak 
power. 

5. Conclusions 

In this paper, we studied the real-time train regulation optimization 
problem under disturbances to suppress the train delays and substation 
peak power. We introduced two novel indirect indicators (i.e. over
lapping time between accelerating phases, overlapping quantity be
tween accelerating phases), which were minimized to reduce substation 
peak power in the train regulation problem. In addition, based on the 
train traffic dynamics model, we developed joint optimal train regula
tion models for minimizing the timetable deviation, headway deviation 
and substation peak power. To capture the model complexity and real- 
time requirements for the train regulation problem, real-time control 
algorithms based on MPC were designed, in which the optimal train 
regulation strategies were generated at each control cycle. 

Numerical examples based on one of the Guangzhou metro lines 
were implemented to demonstrate the performance of the proposed 
approaches. The computational results showed that train regulation 
strategies considering substation peak power reduction can effectively 
minimize the duration of peak power and the timetable and headway 
deviations. Moreover, the computation time of generating the optimal 
solution with minimizing the overlapping quantity by the MPC algo
rithm was only around 0.2s, which satisfied the real-time requirement. 

Our future research will focus on the train regulation problem under 
large perturbations (disruptions). This paper only deals with the train 
regulation problem under small perturbations (disturbances). On the 

Table 12 
The performances of TR-OT strategy with different prediction horizon length L.  

Value of L 1 2 3 4 5 

Total timetable deviation [s] 418.29 347.26 337.03 335.26 334.93 
Max timetable deviation [s] 50.18 44.26 43.42 43.28 43.25 
Total headway deviation [s] 107.58 107.82 107.85 107.84 107.84 
Max headway deviation [s] 23.74 23.21 23.17 23.17 23.16 
Total overlapping time [s] 148.25 148.67 148.31 148.15 148.11 
Total overlapping quantity 47.73 48.57 47.87 47.70 47.70 
Duration of substation power 

over 4 MW [s] 
757.97 765.00 767.83 768.03 767.60 

Average computation time [s] 0.38 8.69 318.53 408.32 432.79  

Table 13 
The performances of TR-OQ strategy with different prediction horizon length L.  

Value of L 1 2 3 4 5 

Total timetable deviation [s] 413.89 341.02 330.35 328.88 328.70 
Max timetable deviation [s] 48.97 42.81 42.00 41.91 41.90 
Total headway deviation [s] 106.76 106.87 109.31 109.28 109.23 
Max headway deviation [s] 23.89 23.21 25.40 25.36 25.36 
Total overlapping time [s] 179.68 172.24 171.54 171.50 171.51 
Total overlapping quantity 73.20 67.70 68.13 68.07 68.10 
Duration of substation power 

over 4 MW [s] 
891.13 894.17 895.83 895.57 895.00 

Average computation time [s] 0.06 0.18 0.41 0.65 0.97  

Table 15 
The performances of TR-OQ strategy with different objective weight coefficient 
p5.  

Value of p5 0 100 500 1000 2000 

Total timetable deviation [s] 330.89 339.09 341.02 341.02 341.03 
Max timetable deviation [s] 41.21 42.44 42.81 42.81 42.81 
Total headway deviation [s] 104.38 106.43 106.87 106.87 106.87 
Max headway deviation [s] 22.57 22.83 23.21 23.21 23.21 
Total overlapping time [s] 191.45 174.13 172.24 172.24 172.24 
Total overlapping quantity 86.10 69.77 67.70 67.70 67.70 
Duration of substation 

power over 4 MW [s] 
1015.33 900.23 894.17 894.17 894.17 

Average computation time 
[s] 

0.05 0.24 0.18 0.18 0.16  

Table 14 
The performances of TR-OT strategy with different objective weight coefficient 
p4.  

Value of p4 0 1 10 100 1000 

Total timetable deviation [s] 330.89 347.26 434.50 508.26 572.18 
Max timetable deviation [s] 41.21 44.26 59.80 85.43 94.45 
Total headway deviation [s] 104.38 107.82 135.63 251.14 323.63 
Max headway deviation [s] 22.57 23.21 34.61 66.19 80.44 
Total overlapping time [s] 191.45 148.67 112.65 92.61 85.71 
Total overlapping quantity 86.10 48.57 27.07 19.17 16.63 
Duration of substation 

power over 4 MW [s] 
1015.33 765.00 528.60 478.80 468.43 

Average computation time 
[s] 

0.05 8.69 28.62 78.77 94.44  
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other hand, train connections at terminal stations will be considered in 
the train regulation method so as to provide a feasible scheme. 
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Appendix A. Transformation properties 

Based on the study (Bemporad & Morari, 1999), two transformation properties are introduced. 
Transformation Property 1. Consider the statement ̃f(x̃)⩽0, where ̃f : Rn→R is affince, x̃ ∈ χ with χ⊂Rn. 
The condition ̃f(x̃)⩽0 can be expressed by a logical variable δ ∈ {0,1}, f̃(x̃)⩽0⇔ δ = 1 is equivalent to 

{
f̃ (̃x)⩽M̃(1 − δ)
f̃ (̃x)⩾ε + (m̃ − ε)δ

(45)  

where, M̃ = maxf̃(x̃) and m̃ = minf̃(x̃). 
Transformation Property 2. The product of two logical variables δ1δ2 can be replaced by an auxiliary logical variable δ3 = δ1δ2, i.e. [δ3 = 1]⇔ [δ1 =

1] and [δ2 = 1], which is equivalent to 
⎧
⎨

⎩

− δ1 + δ3⩽0
− δ2 + δ3⩽0
δ1 + δ2 − δ3⩽1

(46)  

Appendix B. Definition of matrices 

The definitions of matrices in Eqs. (25)–(31) are as follows: 

f1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
M̃ M̃ 0 0 0
M̃ 0 M̃ 0 0
M̃ 0 0 M̃ 0
M̃ 0 0 0 M̃

⎤

⎥
⎥
⎥
⎥
⎦

; 

f2 = [0, 0, 0,1, − 1]T; f3 = [0,0, 0, − 1, 1]T; f4 = [− 1, − 1, − 1, − 1, − 1]T; 
f5 = [0, 1, 0,1, 0]T; f6 = [0,0, 1,0, 1]T; f7 = [0,2M̃,2M̃, 2M̃,2M̃]

T. 
F1 = diag{f1}5I×5I; F3 = diag{f4}5I×I; F5 = [f7; f7;…; f7]5I×1; 

F2 =

⎡

⎢
⎢
⎢
⎢
⎣

f2 f3 0 0 …
0 f2 f3 0 …
… … … … …
0 … … f2 f3
0 … … … f2

⎤

⎥
⎥
⎥
⎥
⎦

5I×I

; F4 =

⎡

⎢
⎢
⎢
⎢
⎣

f5 f6 0 0 …
0 f5 f6 0 …
… … … … …
0 … … f5 f6
0 … … … f5

⎤

⎥
⎥
⎥
⎥
⎦

5I×I

; 

e1 = [1, − 1,1, − 1, 1, − 1, 1, − 1]T ; e2 = [− 1, 1, − 1, 1, − 1, 1, − 1,1]T ; 

e3 =

⎡

⎢
⎢
⎣

M̃ ε − m̃ 0 0 0 0 0 0
0 0 M̃ ε − m̃ 0 0 0 0
0 0 0 0 M̃ ε − m̃ 0 0
0 0 0 0 0 0 M̃ ε − m̃

⎤

⎥
⎥
⎦

T

; 

e4 = [0, 0,0, 0,1, − 1, 1, − 1]T ; e5 = [0,0, − 1, 1,0, 0, − 1, 1]T; 
e6 = [M̃, − ε, M̃, − ε, M̃, − ε, M̃, − ε]T ; 

E1 =

⎡

⎢
⎢
⎢
⎢
⎣

e1 e2 0 0 …
0 e1 e2 0 …
… … … … …
0 … … e1 e2
0 … … … e1

⎤

⎥
⎥
⎥
⎥
⎦

8I×I

; E3 =

⎡

⎢
⎢
⎢
⎢
⎣

e4 e5 0 0 …
0 e4 e5 0 …
… … … … …
0 … … e4 e5
0 … … … e4

⎤

⎥
⎥
⎥
⎥
⎦

8I×I

; 

E2 = diag{e3}8I×4I; E4 = [e6; e6;…; e6]8I×1; 

g1 =

⎡

⎢
⎢
⎢
⎢
⎣

− 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 − 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

T

; 

g2 =

⎡

⎢
⎢
⎣

0 0 0 − 1 0 1 1 − 1 0 1 − 1 0 − 1 1 0
1 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0
− 1 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 − 1 0 − 1 0 1 1 0 − 1 − 1 0 1

⎤

⎥
⎥
⎦

T

; 
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g3 = [0, 0,1, 0,0, 1,0, 0,1, 1,0, 0, − 1,1, 1]T; 
G1 = diag{g1}15I×5I; G2 = diag{g2}15I×4I; G3 = [g3; g3;…; g3]15I×1. 

C1 =

⎡

⎢
⎢
⎢
⎢
⎣

F2
E1
0
⋮
0

⎤

⎥
⎥
⎥
⎥
⎦

28I×I

; C2 =

⎡

⎢
⎢
⎣

F3
0
⋮
0

⎤

⎥
⎥
⎦

28I×I

; C3 =

⎡

⎢
⎢
⎢
⎢
⎣

F1
0
⋮
0
G1

⎤

⎥
⎥
⎥
⎥
⎦

28I×5I

; 

C4 =

⎡

⎢
⎢
⎢
⎢
⎣

0
⋮
0
E2
G2

⎤

⎥
⎥
⎥
⎥
⎦

28I×4I

; C5 =

⎡

⎣
F5 − F4A
E4 − E3A

G3

⎤

⎦

28I×1

; 

The definitions of ηj
i,1, η

j
i,2, η

j
i,3 and ηj

i,4 are as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηj
i,1 = 1⇔ tji⩽t2I− j+1

2I− i+1

ηj
i,2 = 1⇔ tji⩽t2I− j+1

2I− i+1 + A2I− i+1

ηj
i,3 = 1⇔ tji + Ai⩽t2I− j+1

2I− i+1

ηj
i,4 = 1⇔ tji + Ai⩽t2I− j+1

2I− i+1 + A2I− i+1

; 

The definitions of δj
i,1, δj

i,2, δj
i,3, δj

i,4 and δj
i,5 are as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δj
i,1 = ηj

i,2(1 − ηj
i,3)

δj
i,2 = (1 − ηj

i,1)η
j
i,4

δj
i,3 = ηj

i,1(1 − ηj
i,4)

δj
i,4 = ηj

i,1ηj
i,4

δj
i,5 = (1 − ηj

i,1)(1 − ηj
i,4)

; 

F1 = diag(f1)5I×5I ; F2 = diag(f2)5I×I; F3 = diag(f4)5I×I; 
F4 = diag(f5)5I×I ; F7 = diag(f7)5I×1; 

F5 =

⎡

⎢
⎢
⎣

0 … 0 f3
0 … f3 0
… … … …
f3 … 0 0

⎤

⎥
⎥
⎦

5I×I

; F6 =

⎡

⎢
⎢
⎣

0 … 0 f6
0 … f6 0
… … … …
f6 … 0 0

⎤

⎥
⎥
⎦

5I×I

; 

E1 = diag(e1)8I×I; E2 = diag(e3)8I×4I ; E3 = diag(e4)8I×4I; 

E4 =

⎡

⎢
⎢
⎣

0 … 0 e2
0 … e2 0
… … … …
e2 … 0 0

⎤

⎥
⎥
⎦

8I×I

; E5 =

⎡

⎢
⎢
⎣

0 … 0 e5
0 … e5 0
… … … …
e5 … 0 0

⎤

⎥
⎥
⎦

8I×2I

; 

E6 = [e6; e6;…; e6]8I×1; 
G1 = diag(g1)15I×5I; G2 = diag(g2)15I×4I; G3 = diag(g3)15I×1. 

C1 =

⎡

⎢
⎢
⎢
⎢
⎣

F2
E1
0
⋮
0

⎤

⎥
⎥
⎥
⎥
⎦

28I×I

; C2 =

⎡

⎢
⎢
⎣

F3
0
⋮
0

⎤

⎥
⎥
⎦

28I×I

; C3 =

⎡

⎢
⎢
⎢
⎢
⎣

F1
0
⋮
0
G1

⎤

⎥
⎥
⎥
⎥
⎦

28I×5I

; 

C4 =

⎡

⎢
⎢
⎢
⎢
⎣

0
⋮
0
E2
G2

⎤

⎥
⎥
⎥
⎥
⎦

28I×4I

; C5 =

⎡

⎣
F7 − F5tk − F6A
E4 − E4tk − E5A

G3

⎤

⎦

28I×1

; 

The definitions of matrices in Eq. 41 are as follows: 
q1 = [1, − 1, − 1,1]T ; q2 = [− 1,1, 1, − 1]T ; q3 = [M̃, − M̃, M̃, − M̃]

T ; 
q4 = [1/2, − 1/2, − 1/2,1/2]T ; q5 = [− 1/2,1/2,1/2, − 1/2]T ; 
q6 = [M̃ + τ, − τ, M̃ + τ, − τ]T ; s1 = [1, 1, − 1]T ; s2 = [ − 1,0; 0, − 1; 1,1]; 
s3 = [0, 0,1]T ; 

Q1 =

⎡

⎢
⎢
⎢
⎢
⎣

q1 q2 0 0 …
0 q1 q2 0 …
… … … … …
0 … … q1 q2
0 … … … q1

⎤

⎥
⎥
⎥
⎥
⎦

4I×I

; Q3 =

⎡

⎢
⎢
⎢
⎢
⎣

q4 q5 0 0 …
0 q4 q5 0 …
… … … … …
0 … … q4 q5
0 … … … q4

⎤

⎥
⎥
⎥
⎥
⎦

4I×I

; 

Q2 = diag(q4)4I×2I ; Q4 = [q6; q6;…; q6]4I×1; 
S1 = diag(s1)3I×I ; S2 = diag(s2)3I×2I; S3 = [s3; s3;…; s3]3I×1; 
B1 = [Q1; 0]7I×I; B2 = [0; S1]7I×I ; B3 = [Q2; S2]7I×2I ; 
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B4 = [Q4 − Q3A; S3]7I×1; Q1 = diag(q1)4I×I; Q3 = diag(q4)4I×I; 

Q4 =

⎡

⎢
⎢
⎣

0 … 0 q2
0 … q2 0
… … … …
q2 … 0 0

⎤

⎥
⎥
⎦

4I×I

; Q5 =

⎡

⎢
⎢
⎣

0 … 0 q5
0 … q5 0
… … … …
q5 … 0 0

⎤

⎥
⎥
⎦

4I×I

; 

B1 = [Q1; 0]7I×I; B2 = [0; S1]7I×I ; B3 = [Q2; S2]7I×2I ; 
B4 = [Q4 − Q3A − Q4tk − Q5A; S3]7I×1; 
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